

0

Closed Loop Design, LLC

support@cld-llc.com

USB Audio 2.0 with Communication Device Class
(CDC) Abstract Control Model Library
for Analog Devices ADSP-SC598

User’s Guide Revision 1.01

1

Table of Contents
Disclaimer ... 3

Introduction ... 3

USB Background .. 3

CLD Library USB Enumeration Flow Chart .. 4

CLD Audio 2.0 Library Isochronous OUT Flow Chart .. 6

CLD Audio 2. Library Isochronous IN Flow Chart .. 7

CLD CDC Library Bulk OUT Flow Chart ... 9

CLD CDC Library Bulk IN Flow Chart ... 10

USB Audio Device Class v2.0 Background ... 11

Isochronous Endpoint Bandwidth Allocation ... 12

USB Audio Device Class v2.0 Control Endpoint Requests .. 12

CDC Abstract Control Model Background ... 15

CDC Abstract Control Model Control Endpoint Requests ... 15

Dependencies .. 24

CLD SC598 Audio 2.0 with CDC Library Scope and Intended Use .. 24

CLD Audio 2.0 with CDC (2-Channel) Example v1.01 Description ... 24

Running the Example Project ... 24

CLD SC598 Audio 2.0 with CDC Library API .. 27

cld_sc598_audio_2_0_w_cdc_lib_init .. 27

cld_sc598_audio_2_0_w_cdc_lib_main ... 43

cld_audio_2_0_lib_receive_stream_data .. 44

cld_audio_2_0_lib_transmit_audio_data .. 46

cld_audio_2_0_lib_transmit_audio_rate_feedback_data .. 48

cld_cdc_lib_receive_serial_data ... 50

cld_cdc_lib_transmit_serial_data .. 52

cld_audio_2_0_w_cdc_lib_resume_paused_control_transfer .. 53

cld_lib_usb_connect ... 54

cld_ lib_usb_disconnect .. 54

cld_time_125us_tick ... 54

cld_usb0_isr_callback ... 55

cld_time_get .. 55

cld_time_passed_ms ... 56

2

cld_time_get_125us .. 56

cld_time_passed_125us .. 57

cld_lib_status_decode ... 57

cld_lib_access_usb_phy_reg ... 58

Adding the CLD SC598 Audio 2.0 with CDC Library to an Existing CrossCore Embedded Studio

Project ... 59

User Firmware Code Snippets .. 61

main.c .. 61

user.c ... 62

3

Disclaimer
This software is supplied "AS IS" without any warranties, express, implied or statutory, including but not

limited to the implied warranties of fitness for purpose, satisfactory quality and non-infringement. Closed

Loop Design LLC extends you a royalty-free right to use, reproduce, and distribute executable files

created using this software for use with Analog Devices ADSP-SC5xx family processors only. Nothing

else gives you the right to use this software.

Introduction

The Closed Loop Design (CLD) Audio 2.0 with CDC/ACM library creates a simplified interface for

developing a USB Audio v2.0 and Communication Device Class (CDC) Abstract Control Model (ACM)

Serial Emulation device using the Analog Devices EV-SOMCRR-EZKIT and the EV-SC598-SOM

System-on-Module boards. The CLD SC598 Audio 2.0 with CDC library also includes support for timer

functions that facilitate creating timed events quickly and easily. The library's User application interface

is comprised of parameters used to customize the library's functionality as well as callback functions used

to notify the User application of events. These parameters and functions are described in greater detail in

the CLD SC598 Audio 2.0 with CDC Library API section of this document.

USB Background

The following is a very basic overview of some of the USB concepts that are necessary to use the CLD

SC598 Audio 2.0 with CDC Library. However, it is still recommended that developers have at least a

basic understanding of the USB 2.0 protocol. The following are some resources to refer to when working

with USB, USB Audio v2.0, and CDC 1.2 protocols:

• The USB 2.0 Specification

• The USB Device Class Definition for Audio Devices v2.0,

The USB Device Class Definition for Audio Data Formats v.2.0

The USB Device Class Definition for Terminal Types v.2.0

• The USB CDC Class specification v1.2

• USB in a Nutshell: A free online wiki that explains USB concepts.

http://www.beyondlogic.org/usbnutshell/usb1.shtml

• "USB Complete" by Jan Axelson ISBN: 1931448086

USB is a polling based protocol where the Host initiates all transfers, all USB terminology is from the

Host's perspective. For example an 'IN' transfer is when data is sent from a Device to the Host, and an

'OUT' transfer is when the Host sends data to a Device.

The USB 2.0 protocol defines a basic framework that devices must implement in order to work correctly.

This framework is defined in the Chapter 9 of the USB 2.0 protocol, and is often referred to as the USB

'Chapter 9' functionality. Part of the Chapter 9 framework is standard USB requests that a USB Host uses

to control the Device. Another part of the Chapter 9 framework is the USB Descriptors. These USB

Descriptors are used to notify the Host of the Device's capabilities when the Device is attached. The USB

Host uses the descriptors and the Chapter 9 standard requests to configure the Device. This process is

called USB Enumeration. The CLD library includes support for the USB standard requests and USB

Enumeration using some of the parameters specified by the User application when initializing the library.

These parameters are discussed in the cld_sc598_audio_2_0_w_cdc_lib_init section of this document.

The CLD library facilitates USB enumeration and is Chapter 9 compliant without User Application

https://www.usb.org/document-library/usb-20-specification
https://www.usb.org/document-library/audio-devices-rev-20-and-adopters-agreement
https://www.usb.org/document-library/audio-devices-rev-20-and-adopters-agreement
https://www.usb.org/document-library/audio-devices-rev-20-and-adopters-agreement
https://www.usb.org/document-library/class-definitions-communication-devices-12
http://www.beyondlogic.org/usbnutshell/usb1.shtml

4

intervention as shown in the flow chart below. For additional information on USB Chapter 9

functionality or USB Enumeration please refer to one of the USB resources listed above.

CLD Library USB Enumeration Flow Chart

USB/External Event

CLD Library Firmware

User Firmware

USB Cable Connected or USB Bus Reset

Get Device Descriptor Request

Device Descriptor returned by Device with Vendor ID and
Product ID specified by the User Firmware

Set USB Address

USB Host Event

Set USB peripheral s USB Address

Get Configuration Descriptor Request

Configuration Descriptor retuned by the Device

Set Configuration
(CLD library has 1 configuration)

Configures the Device
(Configured and enable any required endpoints)

Request String Descriptors

Return USB String Descriptors defined by the User
Firmware

Get Device Descriptor Request

Device Descriptor returned by Device with Vendor ID and
Product ID specified by the User Firmware

U
S

B
 E

n
u

m
e

ra
ti
o

n

All USB data is transferred using Endpoints that act as a source or sink for data based on the endpoint's

direction (IN or OUT). The USB protocol defines four types of Endpoints, each of which has unique

characteristics that dictate how they are used. The four Endpoint types are: Control, Interrupt, Bulk and

5

Isochronous. Data that is transmitted over USB is broken up into blocks of data called packets. For each

endpoint type there are restrictions on the allowed max packet size. The allowed max packet sizes also

vary based on the USB connection speed. Please refer to the USB 2.0 protocol for more information

about the max packet size supported by the four endpoint types.

The CLD SC598 Audio 2.0 with CDC Library uses Control, Bulk, and Isochronous endpoints, these

endpoint types will be discussed in more detail below.

A Control Endpoint is the only bi-directional endpoint type, and is typically used for command and status

transfers. A Control Endpoint transfer is made up of three stages (Setup Stage, Data Stage, and Status

Stage). The Setup Stage sets the direction and size of the optional Data Stage. The Data Stage is where

any data is transferred between the Host and Device. The Status Stage gives the Device the opportunity

to report if an error was detected during the transfer. All USB Devices are required to include a default

Control Endpoint at endpoint number 0, referred to as Endpoint 0. Endpoint 0 is used to implement all

the USB Protocol defined Chapter 9 framework and USB Enumeration. In the CLD library Endpoint 0 is

also used to handle the USB Audio Device Class v2.0 defined Set and Get requests as well as the CDC

requests. These requests are discussed in more detail in the USB Audio Device Class v2.0 Background

and CDC Abstract Control Model Background sections of this document

Isochronous Endpoints have the following characteristics which make them well suited for streaming

audio data:

• Guaranteed USB bandwidth with bounded latency

• Constant data rate as long as data is provided to the endpoint.

• In the event of a transport error there is no retrying.

These characteristics allow for streaming audio data to be transmitted with deterministic timing. In the

event of a USB transport error the audio data is dropped instead of being retried like a Bulk or Interrupt

endpoint. This allows the streaming audio data to remain in sync. The CLD library supports an

Isochronous IN and Isochronous OUT endpoint, which are used to send and receive streaming audio data

with the USB Host, respectively.

The flow charts below give an overview of how the CLD library and the User firmware interact to process

Isochronous OUT and Isochronous IN transfers. Additionally, the User firmware code snippets included

at the end of this document provide a basic framework for implementing a USB Audio v2.0 device using

the CLD SC598 Audio 2.0 with CDC Library.

6

CLD Audio 2.0 Library Isochronous OUT Flow Chart

Isochronous OUT packet

Unload the Isochronous OUT packet from the endpoint
FIFO to transfer_params->p_data_buffer

Requested transfer_prams->num_bytes received
or short packet?

Call User specified
transfer_params->fp_usb_out_transfer_complete function

Exit OUT Rx ISR, and Wait for next Isochronous Out packet
Rx Interrupt

Isocronous Out Rx Interrupt

Return CLD_USB_DATA_GOOD if the received data is
valid, or CLD_USB_DATA_BAD_STALL to stall the
Isochronous OUT endpoint.

Set the CLD_USB_Transfer_Params parameters to
describe the next Isochronous OUT transfer, and call
cld_audio_2_0_lib_receive_stream_data to re-enable
Isochronous OUT reception

Exit Isochronous OUT Rx ISR

Yes

No

USB/External Event

CLD Library Firmware

User Firmware

USB Host Event

When the fp_audio_streaming_rx_endpoint_enabled
function notifies the User the Isochronous OUT endpoint
has been enabled.

Create a CLD_USB_Transfer_Params variable (called
transfer_params in this flow chart), and set the parameters
to describe the expected Isochronous OUT transfer.
• num_bytes = the size of the Isochronous OUT transfer

• p_data_buffer =address of buffer to store num_bytes
of data

• fp_usb_out_transfer_complete = function to call when
the requested number of bytes is received

• fp_transfer_aborted_callback = function to call if the
transfer is terminated.

• transfer_timeout_ms = number of milliseconds to wait
for the transfer to complete before detecting a timeout
(0 = timeout disabled).

Call the cld_audio_2_0_lib_receive_stream_data function
to enable the Isochronous OUT reception.

Configure Isochronous OUT endpoint DMA

Transfer Timeout, or transfer error?

No

Call User specified
transfer_params->fp_transfer_aborted_callback function

Set the CLD_USB_Transfer_Params parameters to
describe the next Isochronous OUT transfer, and call
cld_audio_2_0_lib_receive_stream_data to re-enable
Isochronous OUT reception

Yes

7

CLD Audio 2. Library Isochronous IN Flow Chart

Load the next the Iscochronos IN packet into the endpoint
FIFO

Requested p_transfer_prams->num_bytes
transmitted?

Call the User specified fp_usb_in_transfer_complete
function

Create a CLD_USB_Transfer_Params variable (called
transfer_params in this flow chart)

transfer_params parameters to describe the requested
Isochronous IN transfer

• num_bytes = the size of the Isochronous IN transfer

• p_data_buffer = address of buffer that has num_bytes
of data to send to the Host

• fp_usb_in_transfer_complete = function called when
the requested number of bytes has been transmitted

• fp_transfer_aborted_callback = function to call if the
transfer is terminated.

• transfer_timeout_ms = number of milliseconds to wait
for the transfer to complete before detecting a timeout
(0 = timeout disabled).

Call cld_lib_audio_2_0_transmit_audio_data
 passing a pointer to transfer_params

Initialize the first packet of the Isochronous IN transfer
using the User specified transfer_params.

Isochronous IN token

Isochronous IN Interrupt

Exit Isochronous IN Interrupt and wait for next Isochronous
IN Token

No

Yes

Wait for the USB Host to issue a USB IN Token on the
Isochronous IN endpoint

USB/External Event

CLD Library Firmware

User Firmware

USB Host Event

Exit Isochronous IN Interrupt

usb_in_transfer_complete

8

Bulk Endpoints are used to transfer large amounts of data where data integrity is critical, but does not

require deterministic timing. A characteristic of Bulk Endpoints is that they can fill USB bandwidth that

isn't used by the other endpoint types. This makes Bulk the lowest priority endpoint type, but it can also

be the fastest as long as the other endpoints don't saturate the USB Bus. An example of a devices that

uses Bulk endpoints is a Mass Storage Device (thumb drives). The CLD library includes a Bulk IN and

Bulk OUT endpoint, which are used to send and receive serial data with the USB Host, respectively.

The flow charts below give an overview of how the CLD CLD SC598 Audio 2.0 with CDC Library and

the User firmware interact to process Bulk OUT and Bulk IN transfers.

9

CLD CDC Library Bulk OUT Flow Chart

Bulk OUT packet

Unload the Bulk OUT packet from the endpoint FIFO to
transfer_params->p_data_buffer

Requested transfer_prams->num_bytes received
or short packet?

Call User specified
transfer_params->fp_usb_out_transfer_complete function

Exit OUT Rx ISR, and Wait for next Bulk Out packet Rx
Interrupt

Bulk Out Rx Interrupt

Return CLD_USB_DATA_GOOD if the received data is
valid, or CLD_USB_DATA_BAD_STALL to stall the
Isochronous OUT endpoint.

Set the CLD_USB_Transfer_Params parameters to
describe the next Bulk OUT transfer, and call
cld_cdc_lib_receive_serial_data to re-enable Bulk OUT
reception

Exit Bulk OUT Rx ISR

Yes

No

USB/External Event

CLD Library Firmware

User Firmware

USB Host Event

When the fp_cld_usb_event_callback function notifies the
User the device has been ENUMERATED/CONFIGURED.

Create a CLD_USB_Transfer_Params variable (called
transfer_params in this flow chart), and set the parameters
to describe the expected Isochronous OUT transfer.

• num_bytes = the size of the Isochronous OUT transfer

• p_data_buffer =address of buffer to store num_bytes
of data

• fp_usb_out_transfer_complete = function to call when
the requested number of bytes is received

• fp_transfer_aborted_callback = function to call if the
transfer is terminated.

• transfer_timeout_ms = number of milliseconds to wait
for the transfer to complete before detecting a timeout
(0 = timeout disabled).

Call the cld_cdc_lib_receive_serial_data function to enable
the Bulk OUT reception.

Configure Bulk OUT endpoint DMA

Transfer Timeout, or transfer error?

No

Call User specified
transfer_params->fp_transfer_aborted_callback function

Set the CLD_USB_Transfer_Params parameters to
describe the next Bulk OUT transfer, and call
cld_cdc_lib_receive_serial_data to re-enable Bulk OUT
reception

Yes

10

CLD CDC Library Bulk IN Flow Chart

Load the next the Bulk IN packet into the endpoint FIFORequested p_transfer_prams->num_bytes
transmitted?

Call the User specified fp_usb_in_transfer_complete
function

Create a CLD_USB_Transfer_Params variable (called
transfer_params in this flow chart)

transfer_params parameters to describe the requested Bulk
IN transfer

• num_bytes = the size of the Bulk IN transfer

• p_data_buffer = address of buffer that has num_bytes
of data to send to the Host

• usb_in_transfer_complete = function called when the
requested number of bytes has been transmitted

• transfer_aborted_callback = function to call if the
transfer is terminated.

• transfer_timeout_ms = the number of milliseconds to
wait for the transfer to complete before timing out.

Call cld_cdc_lib_transmit_serial_data_data passing a
pointer to transfer_params

Initialize the first packet of the Bulk IN transfer using the
User specified transfer_params.

Bulk IN token

Bulk IN Interrupt

Exit Bulk IN Interrupt and wait for next Bulk IN Token

No

Yes

Wait for the USB Host to issue a USB IN Token on the Bulk
IN endpoint

USB/External Event

CLD CDC Library Firmware

User Firmware

USB Host Event

Exit Bulk IN Interrupt

usb_in_transfer_complete

11

USB Audio Device Class v2.0 Background

The following is a basic overview of some USB Audio Device v2.0 concepts that are necessary to use the

CLD SC598 Audio 2.0 with CDC Library. However, it is recommended that developers have at least a

basic understanding of the USB Audio Device Class v2.0 protocol.

The USB Audio Device Class v2.0 protocol is a USB Standard Class released by the USB IF committee,

and it provides a standardized way for a device that is capable of audio input/output to communicate with

a USB Host. The USB Audio Device Class v2.0 USB descriptors provide a detailed description of the

Device's capabilities. This information includes the Device's supported audio sample rate(s), audio data

format, input and output terminals and how the various audio processing components are connected and

controlled.

The Device's audio processing capabilities are described using a series of USB Audio Class Terminal and

Unit Descriptors. The Terminal Descriptors define how audio data is input and output (speakers,

microphones, USB Isochronous endpoints, etc.). The Unit Descriptors describe the Device's audio

processing capabilities and how they connect to the input/output Terminals. The diagram below shows

how the audio Terminal and Unit entities are connected in the CLD example project to implement a basic

device with a stereo speaker output, and stereo input.

IT

Input Terminal

Type: USB Isochronous

 OUT Endpoint

Channels: Left & Right

IT

Input Terminal

Type: Microphone

Channels: Left & Right

Output Terminal

Type: Speaker

Output Terminal

Type: USB Isochronous

 IN Endpoint

Feature Unit

Supports: Volume & Mute

Feature Unit

Supports: Volume & Mute

OT

OT

Audio Audio

Audio Audio

Clock Source

Sample Rate: 48kHz

Clock

Clock

Clock

Clock

More complex audio devices are created by connecting multiple Unit entities together to describe the

Device's capabilities. For more information about the available Unit and Terminal entities, and how they

are used please refer to the USB Audio Class Device v2.0 specification.

12

In order to successfully communicate with a USB Audio device the USB Host needs to know how the

audio data is formatted. This is done using an audio stream format descriptor, which is part of the

Streaming Audio Interface configuration. The USB Audio Device Class v2.0 specification supports

multiple audio data formats which are described in the USB Device Class Definition for Audio Data

Formats v2.0 specification.

Isochronous Endpoint Bandwidth Allocation

As mentioned previously, one of the advantages of Isochronous endpoints is that they provide guaranteed

USB bandwidth. However, this can also be a disadvantage when the bandwidth isn't being used as it is

wasted.

To avoid this disadvantage the USB Audio Device Class v2.0 protocol requires that audio data streaming

interfaces include two settings. The default setting does not include any Isochronous endpoints so its

bandwidth requirement is zero. An alternate interface includes the required Isochronous endpoint(s). This

allows the USB Host to enable the Isochronous endpoints when it needs to send or receive audio data, and

disable them when the audio device is idle. This switch is done using the USB Chapter 9 Set Interface

standard request.

When the CLD SC598 Audio 2.0 with CDC Library receives a Set Interface request the appropriate User

callback function is called. Please refer to the fp_audio_streaming_rx_endpoint_enabled and

fp_audio_streaming_tx_endpoint_enabled function pointer descriptions in the

cld_sc598_audio_2_0_w_cdc_lib_init section of this document for more information.

USB Audio Device Class v2.0 Control Endpoint Requests

The USB Audio Device Class v2.0 control endpoint requests are broken down into Set and Get requests.

These requests are used to control the various Terminal and Unit entities defined in the Configuration

Descriptor. The CLD library support for these requests is explained in the following sections.

Additionally, the User firmware code snippets included at the end of this document provide a basic

framework for implementing the USB audio Control Endpoint requests using the CLD library.

13

USB Audio Device Class v2.0 Set Request

The USB Audio Device Class v2.0 Set Request is used to control the audio functions supported by the

Device. This includes modifying the attributes if the Unit and Terminal entities as well as controlling

features of the streaming audio endpoints.

CLD SC598 Audio Device Class v2.0 Set Request Flow Chart

Set Request Setup Packet

Call User specified fp_audio_set_req_cmd function.

• p_req_params->req = identifies the type of request

• p_req_params->recipient_is_interface = identifies if the request
was sent to an interface or streaming endpoint

• p_req_params->entity_id = the ID for the audio function being
modified (Terminal ID, Unit ID, etc).

• p_req_params->interface_or_endpoint_num = The interface or
endpoint number depending on the recipient specified by
recipient_is_interface.

• p_req_params->setup_packet_wValue = setup packet wValue

• p_transfer_params->num_bytes = setup packet wLength.

Set the p_transfer_params parameters to describe the expected Set
Reqest transfer

• p_data_buffer =address of buffer to store num_bytes of data.

• fp_usb_out_transfer_complete = function to call when the
requested number of bytes is received

• fp_transfer_aborted_callback = function to call if the transfer is
terminated.

• transfer_timeout_ms = not used for Control Transfers

Return CLD_USB_TRANSFER_ACCEPT

Unload the Control OUT packet from the endpoint FIFO to
p_transfer_params->p_data_buffer

Requested p_transfer_prams->num_bytes received?

Call User specified
p_transfer_params->fp_usb_out_transfer_complete function

Exit Control Endpoint ISR, and Wait for next Control Out
packet Rx Interrupt

Endpoint 0 Interrupt

Return CLD_USB_DATA_GOOD if the received data is valid, or
CLD_USB_DATA_BAD_STALL to stall the Status Stage of the
Control OUT transfer.

Exit Control Endpoint ISR

Yes

No

USB/External Event

CLD Library Firmware

User Firmware

USB Host Event

Set Request Data Stage

Set Request Status Stage

14

USB Audio Device Class v2.0 Get Request

The Get Request is a Control IN request used by the Host to request data from the audio functions

supported by the Device. This includes requesting the attributes of the Unit and Terminal entities as well

as features of the audio stream endpoints.

CLD SC598 Audio Device Class v2.0 Get Request Flow Chart

Get Request Setup Packet

Call User specified fp_audio_set_req_cmd function.

• p_req_params->req = identifies the type of request

• p_req_params->recipient_is_interface = identifies if the request
was sent to an interface or streaming endpoint

• p_req_params->entity_id = the ID for the audio function being
accessed (Terminal ID, Unit ID, etc).

• p_req_params->interface_or_endpoint_num = The interface or
endpoint number depending on the recipient specified by
recipient_is_interface.

• p_req_params->setup_packet_wValue = setup packet wValue

• p_transfer_params->num_bytes = setup packet wLength.

Set the p_transfer_params parameters to transmit the requested Get
Request transfer

• p_data_buffer =address of buffer to store num_bytes of data.

• fp_usb_in_transfer_complete = function to call when the
requested number of bytes is transmitted

• fp_transfer_aborted_callback = function to call if the transfer is
terminated.

• transfer_timeout_ms = not used for Control Transfers

Return CLD_USB_TRANSFER_ACCEPT

Load the Control IN packet into the endpoint 0 FIFO from
p_transfer_params->p_data_buffer

Requested number of bytes transmitted?

Call User specified
p_transfer_params->fp_usb_in_transfer_complete function

Exit Control Endpoint ISR, and Wait for next Control IN
packet Tx Interrupt

Endpoint 0 Interrupt

Perform any required Get Request transfer complete functions.

Exit Control Endpoint ISR

Yes

No

USB/External Event

CLD Library Firmware

User Firmware

USB Host Event

Get Request Data Stage

Get Request Status Stage

Set the number of Control IN bytes to the minimum of the Setup
Packet wLength and

p_transfer_params->num_bytes.

15

CDC Abstract Control Model Background

The USB Communication Device Class (CDC) Abstract Control Model (ACM) protocol is a USB

Standard Class protocol released by the USB IF committee. The Communication Device Class was

created to provide a standardized way for USB communication devices to interface with a computer, and

covers a wide range of communication devices. The CLD library implements an Abstract Control Model

Serial Emulation device, so the scope of this document is limited to the CDC ACM Serial Emulation

functionality.

A CDC device is comprised of two USB interfaces. The first interface uses the Communication Device

Class. The second interface uses the Data Interface Class and includes a Bulk IN and Bulk OUT

endpoint, which are used to transfer the serial emulation data with the USB Host.

CDC Abstract Control Model Control Endpoint Requests

The CDC Abstract Control Model defines a couple Control Endpoint requests that a CDC peripheral is

required to support as well as some optional Control Endpoint requests. The Control Endpoint requests

used by the CLD library are explained in the following sections, and include flow charts showing how the

CLD SC598 Audio 2.0 with CDC Library and the User firmware interact to the Control Endpoint

requests.

Additionally, the User firmware code snippets included at the end of this document provide a basic

framework for implementing the CDC control requests using the CLD library.

16

Send Encapsulated Command (required)

Send Encapsulated Command is a Control OUT request and is used by the Host to send protocol specific

data to the device.

CLD CDC Library Send Encapsulated Command Flow Chart

Send Encapsulated Data Setup Packet

Call User specified fp_cdc_cmd_send_encapsulated_cmd
function with p_transfer_params->num_bytes = setup
packet wLength.

Set the p_transfer_params parameters to describe the
expected Send Encapsulated Command transfer

• p_data_buffer =address of buffer to store num_bytes
of data.

• usb_out_transfer_complete = function to call when the
requested number of bytes is received

• transfer_aborted_callback = function to call if the
transfer is terminated.

• transfer_timeout_ms = not used for Control Transfers

Return CLD_USB_TRANSFER_ACCEPT

Unload the Control OUT packet from the endpoint FIFO to
p_transfer_params->p_data_buffer

Requested p_transfer_prams->num_bytes
received?

Call User specified
p_transfer_params->fp_usb_out_transfer_complete

function

Exit Control Endpoint ISR, and Wait for next Control Out
packet Rx Interrupt

Endpoint 0 Interrupt

Return CLD_USB_DATA_GOOD if the received data is
valid, or CLD_USB_DATA_BAD_STALL to stall the Status
Stage of the Control OUT transfer.

Exit Control Endpoint ISR

Yes

No

USB/External Event

CLD CDC Library Firmware

User Firmware

USB Host Event

Send Encapsulated Command Data Stage

Send Encapsulated Command Status Stage

17

Get Encapsulated Command (required)

Get Encapsulated Command is a Control IN request used by the Host to request protocol specified data.

CLD CDC Library Get Encapsulated Command Flow Chart

Get Encapsulated Response Setup Packet

Call User specified fp_cdc_cmd_get_encapsulated_resp
 function with p_transfer_params->num_bytes = setup
packet wLength

Set the p_transfer_params parameters to transmit the
Encapsulated Command Response

• num_bytes = size of the response.

• p_data_buffer = address of buffer to source
num_bytes of data.

• usb_in_transfer_complete = function to call when the
data has been transmitted.

• transfer_aborted_callback = function to call if the
transfer is terminated.

• transfer_timeout_ms = not used for Control Transfers

Return CLD_USB_TRANSFER_ACCEPT

Load the Control IN packet into the endpoint 0 FIFO from
p_transfer_params->p_data_buffer

Get Report data bytes transmitted?

Call User specified
p_transfer_params->fp_usb_in_transfer_complete function

Exit Control Endpoint ISR, and Wait for next Control IN
packet Tx Interrupt

Endpoint 0 Interrupt

Perform any required Get Encapsulated Response transfer
complete functions.

Exit Control Endpoint ISR

Yes

No

USB/External Event

CLD CDC Library Firmware

User Firmware

USB Host Event

Get Encapsulated Response Data Stage

Get Encapsulated Response Status Stage

Set the number of Control IN bytes to the minimum of the
Setup Packet wLength and

p_transfer_params->num_bytes.

18

Set Line Coding (optional)

The Set Line Coding Control OUT request is used by the Host configure the UART parameters of

emulated serial port. The Set Line Coding request includes the following line coding structure in the

Control OUT Data Phase.

typedef struct

{

 unsigned long data_terminal_rate; /* CDC Data Terminal Rate in

 bits per second. */

 unsigned char num_stop_bits; /* CDC Number of stop bits

 0 = 1 stop bit

 1 = 1.5 stop bits

 2 = 2 stop bits */

 unsigned char parity; /* CDC Parity setting

 0 = None

 1 = Odd

 2 = Even

 3 = Mark

 4 = Space */

 unsigned char num_data_bits; /* CDC number of data bits

 (Only 5, 6, 7, 8 and 16

 allowed) */

} CLD_CDC_Line_Coding;

In response to a Set Line Coding command the CDC device should implement the requested

configuration, or stall the endpoint if the request is invalid.

19

CLD CDC Library Set Line Coding Flow Chart

Set Line Coding Setup Packet

Call User specified fp_cdc_cmd_set_line_coding

 function passing a pointer to the received Line Coding

Structure.

Process the received Line Coding structure.

Return CLD_USB_DATA_GOOD if the request is valid.

Return CLD_USB_DATA_BAD_STALL if the request is

invalid

Endpoint 0 Interrupt

USB/External Event

CLD CDC Library Firmware

User Firmware

USB Host Event

Set Line Coding Status Stage

CLD_USB_DATA_GOOD?

Ack the Status Stage

Stall the Status Stage

Yes

No

Exit Endpoint 0 ISR

Initialize a Control OUT data transfer to receive the CDC

Line Coding Structure.

Set Line Coding Data Phase

20

Get Line Coding (optional)

The Get Line Coding Control IN request is used by the Host request current UART parameters of

emulated serial port. The Get Line Coding request includes line coding structure described in the Set

Line Coding section in the Control IN Data Phase.

CLD CDC Library Get Line Coding Flow Chart

Get Line Coding Setup Packet

Call User specified fp_cdc_cmd_get_line_coding
 function.

Set p_line_coding to the current Line Coding values.

Return CLD_SUCCESS if the request is valid.
Return CLD_FAIL if the request is invalid and should be
Stalled

Endpoint 0 Interrupt

USB/External Event

CLD CDC Library Firmware

User Firmware

USB Host Event

Get Line Coding Data Stage

CLD_SUCCESS?

Load the specified Line Coding into the Endpoint 0 FIFO

Stall the Get Line Coding Request

Yes

No

Exit Endpoint 0 ISR

Get Line Coding Status Stage

Exit Endpoint 0 ISR

21

Set Control Line State (optional)

The Set Control Line State Control OUT request is used by the Host to set the value of the emulated serial

port RS-232 RTS and DTR control signals. The Set Control Line State request includes the following

control signal structure in the Control OUT Data Phase.

typedef struct

{

 union

 {

 struct

 {

 unsigned short dte_present : 1; /* Indicates to DCE if DTE is

 present or not.

 This signal corresponds to

 V.24 signal 108/2

 and RS-232 signal DTR.

 0 - Not Present

 1 - Present */

 unsigned short activate_carrier : 1; /* Carrier control for half

 duplex modems.

 This signal corresponds to

 V.24 signal 105 and RS-232

 signal RTS.

 0 - Deactivate carrier

 1 - Activate carrier

 The device ignores the

 value of this bit when

 operating in full duplex

 mode. */

 unsigned short reserved : 14;

 } bits;

 unsigned short state;

 } u;

} CLD_CDC_Control_Line_State;

22

CLD CDC Library Set Control Line State Flow Chart

Set Control Line State Setup Packet

Process the received Control Line State structure.

Return CLD_USB_DATA_GOOD if the request is valid.

Return CLD_USB_DATA_BAD_STALL if the request is

invalid

Endpoint 0 Interrupt

USB/External Event

CLD CDC Library Firmware

User Firmware

USB Host Event

Set Control Line State Status Stage

CLD_USB_DATA_GOOD?

Ack the Status Stage

Stall the Status Stage

Yes

No

Exit Endpoint 0 ISR

Call User specified fp_cdc_cmd_set_control_line_state

 function passing a pointer to the received Control Line

State Structure.

23

Send Break (optional)

The Send Break Control OUT request is used by the Host request the device to generate a RS-232 style

break for the specified duration (in milliseconds). If the duration is set to 0xFFFF the device should

generate a break until a another Send Break command is received with a duration of 0.

CLD CDC Library Send Break Flow Chart

Send Break Setup Packet

Call User specified fp_cdc_cmd_send_break

 function with duration = Host requested break duration.

Process the requested break duration.

Return CLD_USB_DATA_GOOD if the request is valid.

Return CLD_USB_DATA_BAD_STALL if the request is

invalid

Endpoint 0 Interrupt

USB/External Event

CLD CDC Library Firmware

User Firmware

USB Host Event

Send Break Status Stage

CLD_USB_DATA_GOOD?

Ack the Status Stage

Stall the Status Stage

Yes

No

Exit Endpoint 0 ISR

24

Dependencies

In order to function properly, the CLD SC598 Audio 2.0 with CDC Library requires the following

resources:

• ULPI (8-PIN interface) compliant USB PHY which outputs a USB clock to the processor.

• The CLD library uses DMA for all USB transfers. Requiring all data transferred over USB to be

located in un-cached memory, and be 32-bit aligned. Including buffers used by the CLD library

which are located in an ".usb_lib_uncached" memory section. In order for the library to work

properly, the User must define the usb_lib_uncached section in their loader file and configure the

cache accordingly.

• The User firmware is responsible for enabling the USBC I/O pins in the CCES project Pin

Multiplexing project settings.

• The User firmware is responsible for configuring all other non-USB specific peripherals,

including clocks, power modes, etc.

CLD SC598 Audio 2.0 with CDC Library Scope and Intended Use

The CLD SC598 Audio 2.0 with CDC Library implements the USB Audio Device Class v2.0 and

CDC/ACM required functionality to implement a USB Audio and CDC device, as well as providing time

measurements functionality. The CLD library is designed to be added to an existing User project, and as

such only includes the functionality needed to implement the above mentioned USB, and timer keeping

features. All other aspects of SC598 processor configuration must be implemented by the User code.

CLD Audio 2.0 with CDC (2-Channel) Example v1.01 Description

The CLD example project provided with the CLD SC598 Audio 2.0 with CDC Library implements a

basic USB audio device that supports a single stereo input and stereo output loopback, and a CDC

Abstract Control model USB serial port echo.

 Running the Example Project

1. With the example project was developed using the ADSP SC598 SOM and carrier board, and

toggles the LED connected to GPIO port C pin 3 every 250 milliseconds to provide a visual

indicator the project is running.

2. Once the example project is running on the EZ Board connect a USB mini-b cable from a PC to

the “USB Phy” connector of the carrier board. Windows 10 will install its built-in CDC/ACM

and USB Audio 2.0 drivers, and the device will be listed in the Device Manager as shown below:

25

Testing CDC

1. Using TeraTerm, or another serial terminal program, connect to the new serial port as shown

below and click New Open:

2. The example project will echo the data it received over USB prepended with “Lib Echo:” as

shown below:

Testing Audio 2.0

1. Under the Sound setting for Windows 10, select the SC598 USB Audio v2.0 with CDC device as

the output and input device as shown below:

26

2. Play an audio file, movie, or other means of outputting audio.

3. The example project will echo the received audio data using its microphone input, which can be

seen using Audacity or other audio recording software.

27

CLD SC598 Audio 2.0 with CDC Library API

The following CLD library API descriptions include callback functions that are called by the library

based on USB events. The following color code is used to identify if the callback function is called from

the USB interrupt service routine, or from mainline. The callback functions called from the USB

interrupt service routine are also italicized so they can be identified when printed in black and white.

Callback called from the mainline context

Callback called from the USB interrupt service routine

cld_sc598_audio_2_0_w_cdc_lib_init

CLD_RV cld_sc598_audio_2_0_w_cdc_lib_init

(CLD_SC598_Audio_2_0_w_CDC_Lib_Init_Params * p_lib_params)

Initializes the CLD SC598 Audio 2.0 with CDC Library.

Arguments

p_lib_params Pointer to a CLD_SC598_Audio_2_0 _w_CDC_Lib_Init_Params

structure that has been initialized with the User Application

specific data.

Return Value

This function returns the CLD_RV type which represents the status of the CLD library initialization

process. The CLD_RV type has the following values:

CLD_SUCCESS The library was initialized successfully
CLD_FAIL There was a problem initializing the library
CLD_ONGOING The library initialization is being processed

Details

The cld_sc598_audio_2_0_w_cdc_lib_init function is called as part of the device initialization and must

be repeatedly called until the function returns CLD_SUCCESS or CLD_FAIL. If CLD_FAIL is returned

the library will output an error message identifying the cause of the failure using the fp_cld_lib_status

function if defined by the User application. Once the library has been initialized successfully the main

program loop can start.

The CLD_SC598_Audio_2_0_w_CDC_Lib_Init_Params structure is described below:

typedef struct

{

 unsigned short vendor_id;

 unsigned short product_id;

 unsigned char usb_bus_max_power

 unsigned short device_descriptor_bcdDevice

 unsigned char phy_hs_timeout_calibration;

 unsigned char phy_fs_timeout_calibration;

 CLD_Boolean phy_delay_req_after_ulip_chirp_cmd;

 CLD_RV (*fp_init_usb_phy) (void);

28

 unsigned char audio_control_category_code;

 unsigned char * p_unit_and_terminal_descriptors;

 unsigned short unit_and_terminal_descriptors_length;

 CLD_Audio_2_0_Stream_Interface_Params *

 p_audio_streaming_rx_interface_params;

 CLD_Audio_2_0_Rate_Feedback_Params * p_audio_rate_feedback_rx_params;

 CLD_Audio_2_0_Stream_Interface_Params *

 p_audio_streaming_tx_interface_params;

 CLD_USB_Transfer_Request_Return_Type (*fp_audio_set_req_cmd)

 (CLD_Audio_2_0_Cmd_Req_Parameters * p_req_params,

 CLD_USB_Transfer_Params * p_transfer_data);

 CLD_USB_Transfer_Request_Return_Type (*fp_audio_get_req_cmd)

 (CLD_Audio_2_0_Cmd_Req_Parameters * p_req_params,

 CLD_USB_Transfer_Params * p_transfer_data);

 void (*fp_audio_streaming_rx_endpoint_enabled) (CLD_Boolean enabled);

 void (*fp_audio_streaming_tx_endpoint_enabled) (CLD_Boolean enabled);

 CLD_Serial_Data_Bulk_Endpoint_Params * p_serial_data_rx_endpoint_params;

 CLD_Serial_Data_Bulk_Endpoint_Params * p_serial_data_tx_endpoint_params;

 CLD_USB_Transfer_Request_Return_Type (*fp_cdc_cmd_send_encapsulated_cmd)

 (CLD_USB_Transfer_Params * p_transfer_data);

 CLD_USB_Transfer_Request_Return_Type (*fp_cdc_cmd_get_encapsulated_resp)

 (CLD_USB_Transfer_Params * p_transfer_data);

 CLD_USB_Data_Received_Return_Type (*fp_cdc_cmd_set_line_coding)

 (CLD_CDC_Line_Coding * p_line_coding);

 CLD_RV (*fp_cdc_cmd_get_line_coding) (CLD_CDC_Line_Coding *

 p_line_coding);

 CLD_USB_Data_Received_Return_Type (*fp_cdc_cmd_set_control_line_state)

 (CLD_CDC_Control_Line_State * p_control_line_state);

 CLD_USB_Data_Received_Return_Type (*fp_cdc_cmd_send_break) (unsigned

 short duration);

 unsigned char support_cdc_network_connection;

 unsigned short cdc_class_bcd_version;

 unsigned char cdc_class_control_protocol_code;

 const char * p_usb_string_manufacturer;

 const char * p_usb_string_product;

 const char * p_usb_string_serial_number;

 const char * p_usb_string_configuration;

 const char * p_usb_string_audio_control_interface;

 const char * p_usb_string_audio_streaming_out_interface;

 const char * p_usb_string_audio_streaming_in_interface;

 const char * p_usb_string_communication_class_interface;

 const char * p_usb_string_data_class_interface;

29

 unsigned char user_string_descriptor_table_num_entries;

 CLD_ Audio_2_0_Lib_User_String_Descriptors *

 p_user_string_descriptor_table;

 unsigned short usb_string_language_id;

 void (*fp_cld_usb_event_callback) (CLD_USB_Event event);

 void (*fp_cld_lib_status) (unsigned short status_code,

 void * p_additional_data,

 unsigned short additional_data_size);

} CLD_SC598_Audio_2_0_w_CDC_Lib_Init_Params;

A description of the CLD_SC598_Audio_2_0_w_CDC_Lib_Init_Params structure elements is included

below:

Structure Element Description
vendor_id The 16-bit USB vendor ID that is returned to the USB Host in the USB

Device Descriptor.

USB Vendor ID's are assigned by the USB-IF and can be purchased

through their website (www.usb.org).
product_id The 16-bit product ID that is returned to the USB Host in the USB Device

Descriptor.
usb_bus_max_power USB Configuration Descriptor bMaxPower value (0 = self-powered).

Refer to the USB 2.0 protocol section 9.6.3.

device_descriptor_bcd_device USB Device Descriptor bcdDevice value.

Refer to the USB 2.0 protocol section 9.6.1.

phy_hs_timeout_calibration High Speed USB timeout PHY calibration value See ADSP-SC59x

Hw Reference Manual bits 2:0 of the USBC_CFG register

phy_fs_timeout_calibration High Speed USB timeout PHY calibration value See ADSP-SC59x

Hw Reference Manual bits 2:0 of the USBC_CFG register

fp_init_usb_phy User defined function used to initialize and reset the USB Phy

The fp_init_usb_phy function returns the CLD_RV type, which has

the following values:

Return Value Description
CLD_ONGOING Results in this function getting

additional runtime.
CLD_SUCCESS USB Phy initialized

successfully.
CLD_FAIL Phy initialization failed, causes

USB library initialization

failure.

audio_control_category_code Audio Control Interface Header Descriptor bCategory code

 (refer to: USB Device Class Definition of Audio Devices v 2.0

section 4.7.2)

p_unit_and_terminal_descriptors Pointer to the Unit and Terminal Descriptors which are part of the

Audio Control interface in the USB Configuration Descriptor.

30

unit_and_terminal_descriptors_len

gth

The length of the Unit and Terminal Descriptors addressed by

p_unit_and_terminal_descriptors.

p_audio_streaming_rx_interface_p

arams

Pointer to a CLD_Audio_2_0_Stream_Interface_Params structure

that describes how the Isochronous OUT endpoint and related USB

Audio Streaming interface should be configured. The a

CLD_Audio_2_0_Stream_Interface_Params structure contains the

following elements:

Structure Element Description

endpoint_num Sets the USB endpoint number

of the Isochronous endpoint.

The endpoint number must be

within the following range:

1 ≤ endpoint num ≤ 12. Any

other endpoint number will

result in the

cld_sc598_audio_2_0_w_cdc_

lib_init function returning

CLD_FAIL

max_packet_size_full_speed Sets the Isochronous

endpoint's max packet size

when operating at Full Speed.

The maximum max packet size

is 1023 bytes.

max_packet_size_high_speed Sets the Isochronous

endpoint's max packet size

when operating at High Speed.

The maximum max packet size

is 1024 bytes.

b_interval_full_speed Full-Speed polling interval in

the USB Endpoint Descriptor.

(See USB 2.0 section 9.6.6)

b_interval_high_speed High-Speed polling interval in

the USB Endpoint Descriptor.

(See USB 2.0 section 9.6.6)

b_terminal_link The Terminal ID of the

Terminal connected to this

endpoint.

b_format_type Format type of the streaming

interface

bm_formats Supported audio format

bitmap.

b_nr_channels Number of audio channels

supported by the streaming

interface.

i_channel_config Index of the string descriptor

describing the first physical

channel. These strings should

be defined in the

31

user_string_descriptor_table.

p_encoder_descriptor Pointer to an optional USB

Audio 2.0 Encoder descriptor.

p_decoder_descriptor Pointer to an optional USB

Audio 2.0 Decoder descriptor.

p_format_descriptor Pointer to the format descriptor

defined in the USB Device

Class Definition for Audio

Data Formats v2.0

specification.

p_audio_stream_endpoint_data

_descriptor

Pointer to the Audio Streaming

endpoint data descriptor (See

USB Device Class Definition

for Audio Devices v2.0 section

4.10.1.2).

p_audio_rate_feedback_rx_params Pointer to a CLD_Audio_2_0_Rate_Feedback_Params structure

that describes how the Isochronous IN feedback endpoint. The a

CLD_Audio_2_0_Rate_Feedback_Params structure contains the

following elements:

Structure Element Description

max_packet_size_full_speed Sets the Isochronous

endpoint's max packet size

when operating at Full Speed.

The maximum max packet size

is 1023 bytes.

max_packet_size_high_speed Sets the Isochronous

endpoint's max packet size

when operating at High Speed.

The maximum max packet size

is 1024 bytes.

b_interval_full_speed Full-Speed polling interval in

the USB Endpoint Descriptor.

(See USB 2.0 section 9.6.6)

b_interval_high_speed High-Speed polling interval in

the USB Endpoint Descriptor.

(See USB 2.0 section 9.6.6)

p_audio_streaming_tx_interface_p

arams

Pointer to a CLD_Audio_2_0_Stream_Interface_Params structure

that describes how the Isochronous IN endpoint and related USB

Audio Streaming interface should be configured.

Refer to the p_audio_streaming_rx_interface_params description

(above) for information about the

CLD_SC598_Audio_2_0_Stream_Interface_Params structure.

fp_audio_set_req_cmd Pointer to the function that is called when a USB Audio Device

Class v2.0 Set Request is received. This function has a pointer to

the CLD_USB_Transfer_Params structure ('p_transfer_data') , and

a pointer to the CLD_ Audio_2_0_Cmd_Req_Parameters

 (p_req_params) as its parameters.

The following CLD_Audio_2_0_Cmd_Req_Parameters structure

32

elements are used to processed a Set Request:

Structure Element Description

req Identifies the type of request.

The valid types if requests are

listed below:
CLD_REQ_CURRENT

CLD_REQ_RANGE

CLD_REQ_MEMORY

recipient_is_interface Identifies if the request was

sent to an interface or Audio

streaming endpoint

entity_id The ID for the audio function

being modified (Terminal ID,

Unit ID, etc)

interface_or_endpoint_num The interface or endpoint

number for the request

depending on the recipient

specified by the

recipient_is_interface

parameter.

setup_packet_wValue wValue field from the USB

Setup Packet.

The following CLD_USB_Transfer_Params structure elements are

used to processed a Set Request:

Structure Element Description

num_bytes The number of bytes from the

Setup Packet wLength field,

which is the number of bytes

that will be transferred to

p_data_buffer before calling

the

fp_usb_out_transfer_complete

callback function.

p_data_buffer Pointer to the data buffer to

store the Set Reqeust data.

The size of the buffer should

be greater than or equal to the

value in num_bytes.

fp_usb_out_transfer_complete Function called when

num_bytes of data has been

written to the p_data_buffer

memory.

fp_transfer_aborted_callback Function called if there is a

problem receiving the data, or

if the transfer is interrupted.

transfer_timeout_ms Not used for Control Requests

since the Host has the ability

to interrupt any Control

33

transfer.

The fp_audio_set_req_cmd function returns the

CLD_USB_Transfer_Request_Return_Type, which has the

following values:

Return Value Description
CLD_USB_TRANSFER_ACCEPT Notifies the CLD Library that

the Set Request data should be

accepted using the

p_transfer_data values.
CLD_USB_TRANSFER_PAUSE Requests that the CLD Library

pause the Set Request transfer.

This causes the Control

Endpoint to be nak'ed until the

transfer is resumed by calling

cld_audio_2_0_lib_

resume_paused_control_

transfer.
CLD_USB_TRANSFER_DISCARD Requests that the CLD Library

discard the number of bytes

specified in

p_transfer_params->

num_bytes. In this case the

library accepts the Set Request

from the USB Host but

discards the data.
CLD_USB_TRANSFER_STALL This notifies the CLD Library

that there is an error and the

request should be stalled.

fp_audio_get_req_cmd Pointer to the function that is called when a USB Audio Device

Class v2.0 Get Request is received. This function has a pointer to

the CLD_USB_Transfer_Params structure ('p_transfer_data'), and a

pointer to the CLD_Audio_2_0_Cmd_Req_Parameters

 (p_req_params) as its parameters.

The following CLD_Audio_2_0_Cmd_Req_Parameters structure

elements are used to processed a Get Request:

Structure Element Description

req Identifies the type of request.

The valid types if requests are

listed below:
CLD_REQ_CURRENT

CLD_REQ_RANGE

CLD_REQ_MEMORY

recipient_is_interface Identifies if the request was

sent to an interface or Audio

streaming endpoint

entity_id The ID for the audio function

being accessed (Terminal ID,

Unit ID, etc)

34

interface_or_endpoint_num The interface or endpoint

number for the request

depending on the recipient

specified by the

recipient_is_interface

parameter.

setup_packet_wValue wValue field from the USB

Setup Packet.

The following CLD_USB_Transfer_Params structure elements are

used to processed a Set Request:

Structure Element Description

num_bytes The number of bytes from the

Setup Packet wLength field,

which is the number of bytes

that the device can send from

p_data_buffer before calling

the fp_usb_out_transfer_

complete callback function.

p_data_buffer Pointer to the data buffer used

to source the Get Request

data. The size of the buffer

should be greater than or

equal to the value in

num_bytes.

fp_usb_in_transfer_complete Function called when

num_bytes of data has been

transmitted to the USB Host.

fp_transfer_aborted_callback Function called if there is a

problem transmitting the data,

or if the transfer is interrupted.

transfer_timeout_ms Not used for Control Requests

since the Host has the ability

to interrupt any Control

transfer.

The fp_audio_get_req_cmd function returns the

CLD_USB_Transfer_Request_Return_Type, which has the

following values:

Return Value Description
CLD_USB_TRANSFER_ACCEPT Notifies the CLD library that

the Get Request data should be

transmitted using the

p_transfer_data values.
CLD_USB_TRANSFER_PAUSE Requests that the CLD library

pause the Get Request transfer.

This causes the Control

Endpoint to be nak'ed until the

transfer is resumed by calling

35

cld_audio_2_0_lib_

resume_paused_control_

transfer.
CLD_USB_TRANSFER_DISCARD Requests that the CLD library

to return a zero length packet

in response to the Get Request.
CLD_USB_TRANSFER_STALL This notifies the CLD library

that there is an error and the

request should be stalled.

fp_audio_streaming_rx_endpoint_

enabled

Function called when the Isochronous OUT streaming interface is

enabled/disabled by the USB Host using the Set Interface

command.

fp_audio_streaming_tx_endpoint_

enabled

Function called when the Isochronous IN streaming interface is

enabled/disabled by the USB Host using the Set Interface

command.

p_serial_data_rx_endpoint_params

Pointer to a CLD_Serial_Data_Bulk_Endpoint_Params

structure that describes how the Bulk OUT endpoint should be

configured. The CLD_Serial_Data_Bulk_Endpoint_Params

structure contains the following elements:

Structure Element Description

endpoint_num Sets the USB endpoint number

of the Bulk endpoint. The

endpoint number must be

within the following range:

1 ≤ endpoint_num ≤ 12. Any

other endpoint number will

result in the

cld_sc598_audio_2_0_w_cdc_

lib_init function returning

CLD_FAIL

max_packet_size_full_speed Sets the Bulk endpoint's max

packet size when operating at

Full Speed. The valid Bulk

endpoint max packet sizes are

as follows:

8, 16, 32, and 64 bytes.

max_packet_size_high_speed Sets the Bulk endpoint's max

packet size when operating at

High Speed. The valid Bulk

endpoint max packet sizes are

as follows:

8, 16, 32, 64 and 512 bytes.

p_serial_data_tx_endpoint_params

Pointer to a CLD_Serial_Data_Bulk_Endpoint_Params

structure that describes how the Bulk IN endpoint should be

configured. The CLD_Serial_Data_Bulk_Endpoint_Params

structure contains the following elements:

Structure Element Description

endpoint_num Sets the USB endpoint number

36

of the Bulk endpoint. The

endpoint number must be

within the following range:

1 ≤ endpoint_num ≤ 12. Any

other endpoint number will

result in the

cld_sc598_audio_2_0_w_cdc_

lib_init function returning

CLD_FAIL

max_packet_size_full_speed Sets the Bulk endpoint's max

packet size when operating at

Full Speed. The valid Bulk

endpoint max packet sizes are

as follows:

8, 16, 32, and 64 bytes.

max_packet_size_high_speed Sets the Bulk endpoint's max

packet size when operating at

High Speed. The valid Bulk

endpoint max packet sizes are

as follows:

8, 16, 32, 64 and 512 bytes.

fp_cdc_cmd_send_encapsulated_cmd Pointer to the function that is called when a CDC Send

Encapsulated Command request is received. This function a pointer

to the CLD_USB_Transfer_Params structure ('p_transfer_data') as

its parameters.

The following CLD_USB_Transfer_Params structure elements are

used to processed a Send Encapsulated Command transfer:

Structure Element Description

num_bytes The number of bytes from

the Setup Packet wLength

field, which is the number

of bytes that will be

transferred to p_data_buffer

before calling the

fp_usb_out_transfer_

complete callback function.

p_data_buffer Pointer to the data buffer to

store the Send Encapsulated

Command data. The size of

the buffer should be greater

than or equal to the value in

num_bytes.

fp_usb_out_transfer_complete Function called when

num_bytes of data has been

written to the p_data_buffer

memory.

fp_transfer_aborted_callback Function called if there is a

problem receiving the data,

37

or if the transfer is

interrupted.

transfer_timeout_ms Not used for Control

Requests since the Host has

the ability to interrupt any

Control transfer.

The fp_cdc_cmd_send_encapsulated_cmd function returns the

CLD_USB_Transfer_Request_Return_Type, which has the

following values:

Return Value Description
CLD_USB_TRANSFER_ACCEPT Notifies the CLD library that

the Send Encapsulated

Command data should be

accepted using the

p_transfer_data values.
CLD_USB_TRANSFER_PAUSE Requests that the CLD

library pause the Set Report

transfer. This causes the

Control Endpoint to be

nak'ed until the transfer is

resumed by calling cld_

audio_2_0_w_cdc_lib_resu

me_

paused_control_transfer.
CLD_USB_TRANSFER_DISCARD Requests that the CLD

library discard the number of

bytes specified in

p_transfer_params->

num_bytes. In this case the

library accepts the Send

Encapsulated Command

from the USB Host but

discards the data. This is

similar to the concepts of

frame dropping in

audio/video applications.
CLD_USB_TRANSFER_STALL This notifies the CLD library

that there is an error and the

request should be stalled.

fp_cdc_cmd_get_encapsulated_resp Pointer to the function that is called when a CDC Get Encapsulated

Response request is received. This function takes a pointer to the

CLD_USB_Transfer_Params structure ('p_transfer_data') as its

parameters.

The following CLD_USB_Transfer_Params structure elements are

used to processed a Get Encapsulated Response request:

Structure Element Description

num_bytes The number of bytes from

38

the Setup Packet wLength

field.

p_data_buffer Pointer to the data buffer to

source the Get Encapsulated

Response data. The size of

the buffer should be greater

than or equal to the value in

num_bytes.

fp_usb_in_transfer_complete Function called when Get

Encapsulated Response data

has been transferred to the

Host.

fp_transfer_aborted_callback Function called if there is a

problem transferring the data,

or if the transfer is

interrupted

transfer_timeout_ms Not used for Control

Requests since the Host has

the ability to interrupt any

Control transfer.

The fp_cdc_cmd_get_encapsulated_resp function returns the

CLD_USB_Transfer_Request_Return_Type, which has the

following values:

Return Value Description
CLD_USB_TRANSFER_ACCEPT Notifies the CLD library that

the Get Encapsulated

Response data should be

transferred using the

p_transfer_data values.
CLD_USB_TRANSFER_PAUSE Requests that the CLD

library pause the Get

Encapsulated Response

transfer. This causes the

Control Endpoint to be

nak'ed until the transfer is

resumed by calling cld_

audio_2_0_w_cdc_lib_resu

me_

paused_control_transfer.
CLD_USB_TRANSFER_DISCARD Requests that the CLD

library to return a zero length

packet in response to the Get

Encapsulated Response

request.
CLD_USB_TRANSFER_STALL This notifies the CLD library

that there is an error and the

request should be stalled.

fp_cdc_cmd_set_line_coding Pointer to the function that is called when a CDC Set Line Coding

request is received. This function takes a pointer to the Host

39

specified CLD_CDC_Line_Coding structure ('p_line_coding') as its

parameters.

The following CLD_CDC_Line_Coding structure elements are

used to processed a Set Line Coding request:

Structure Element Description

data_terminal_rate Serial baud rate in bits per

second.

num_stop_bits CDC Number of stop bits.

0 = 1 stop bit

1 = 1.5 stop bits

2 = 2 stop bits.

parity CDC parity setting

0 = None

1 = Odd

2 = Even

3 = Mark

4 = Space

num_data_bits CDC Number of data bits

(only 5, 6, 7, 8 and 16 are

valid).

The fp_cdc_cmd_set_line_coding function returns the

CLD_USB_Data_Received_Return_Type, which has the following

values:

Return Value Description
CLD_USB_DATA_GOOD Notifies the CLD library that

the request is valid.
CLD_USB_DATA_BAD_STALL

Notifies the CLD library that

the request is invalid, and

should be stalled.

fp_cdc_cmd_get_line_coding Pointer to the function that is called when a CDC Get Line Coding request

is received. This function takes a pointer to CLD_CDC_Line_Coding

structure ('p_line_coding') as its parameters. The User firmware should set

the p_line_coding structure values based on its active settings.

The following CLD_CDC_Line_Coding structure elements are used to

processed a Get Line Coding request:

Structure Element Description

data_terminal_rate Serial baud rate in bits per

second.

num_stop_bits CDC Number of stop bits.

0 = 1 stop bit

1 = 1.5 stop bits

2 = 2 stop bits.

parity CDC parity setting

0 = None

1 = Odd

2 = Even

3 = Mark

4 = Space

num_data_bits CDC Number of data bits

40

(only 5, 6, 7, 8 and 16 are valid).

The fp_cdc_cmd_get_line_coding function returns CLD_RV, which has

the following values:

Return Value Description

CLD_SUCCESS Notifies the CLD library that

the request is valid and the

p_line_coding value should be

returned to the Host.

CLD_FAIL

Notifies the CLD library that

the request is invalid, and

should be stalled.

fp_cdc_cmd_set_control_line_state Pointer to the function that is called when a CDC Set Control Line State

request is received. This function takes a pointer to the Host specified

CLD_CDC_Control_Line_State structure ('p_control_line_state') as its

parameters.

The following CLD_CDC_Control_Line_State structure elements are used

to processed a Set Control Line State request:

Structure Element Description

dte_present Controls if the DTE is present or

not. This corresponds to the RS-

232 DTR signal.

0 = Not Present

1 = Present

activate_carrier Carrier control used in half

duplex serial links. This signal

corresponds to the RS-232 RTS

signal.

0 = Disabled

1 = Active

The fp_cdc_cmd_set_control_line_state function returns the

CLD_USB_Data_Received_Return_Type, which has the following values:

Return Value Description

CLD_USB_DATA_GOOD Notifies the CLD library that

the request is valid.

CLD_USB_DATA_BAD_STALL

Notifies the CLD library that

the request is invalid, and

should be stalled.

fp_cdc_cmd_send_break Pointer to the function that is called when a CDC Send Break

request is received. This function takes the host specified duration

in milliseconds ('duration') as its parameters.

The fp_cdc_cmd_send_break function returns the

CLD_USB_Data_Received_Return_Type, which has the following

values:

Return Value Description
CLD_USB_DATA_GOOD Notifies the CLD library that

the request is valid.
CLD_USB_DATA_BAD_STALL

Notifies the CLD library that

the request is invalid, and

should be stalled.

41

support_cdc_network_connection

Tells the CLD library if the User firmware supports the CDC

Network Connection Notification.

0 = Not supported

1 = Supported

cdc_class_bcd_version CDC Class Version in BCD. Returned in the CDC Header

Functional Descriptor's bcdCDC field. (refer to the CDC

specification v1.2 section 5.3.2.1).

cdc_class_control_protocol_code Value used in the CDC interface descriptor's bInterfaceProtocol

field. The valid CDC Protocol codes are defined in the CDC v.1.2

specification in Table 5 on page 13.

p_usb_string_manufacturer Pointer to the null-terminated string. This string is used by the

library to generate the Manufacturer USB String Descriptor. If the

Manufacturer String Descriptor is not used set

p_usb_string_manufacturer to CLD_NULL.

p_usb_string_product Pointer to the null-terminated string. This string is used by the CLD

library to generate the Product USB String Descriptor. If the

Product String Descriptor is not used set p_usb_string_product to

CLD_NULL.

p_usb_string_serial_number Pointer to the null-terminated string. This string is used by the CLD

library to generate the Serial Number USB String Descriptor. If the

Serial Number String Descriptor is not used set

p_usb_string_serial_number to CLD_NULL.

p_usb_string_configuration Pointer to the null-terminated string. This string is used by the CLD

library to generate the Configuration USB String Descriptor. If the

Configuration String Descriptor is not used set

p_usb_string_configuration to CLD_NULL.
p_usb_string_audio_control_interface

Pointer to the null-terminated string. This string is used by the CLD

library to generate the Audio Control Interface USB String

Descriptor. If this interface String Descriptor is not used set it to

CLD_NULL.

p_usb_string_audio_streaming_

out_interface

Pointer to the null-terminated string. This string is used by the CLD

library to generate the Audio OUT Streaming Interface USB String

Descriptor. If this interface String Descriptor is not used set it to

CLD_NULL.

p_usb_string_audio_streaming_in

_interface

Pointer to the null-terminated string. This string is used by the CLD

library to generate the Audio IN Streaming Interface USB String

Descriptor. If this interface String Descriptor is not used set it to

CLD_NULL.

p_usb_string_communication_clas

s_interface

Pointer to the null-terminated string. This string is used by the CLD

library to generate the CDC Interface USB String Descriptor. If the

CDC Interface String Descriptor is not used set

p_usb_string_communication_class_interface to CLD_NULL.

p_usb_string_data_class_interface

Pointer to the null-terminated string. This string is used by the CLD

library to generate the Data Class Interface USB String Descriptor.

If the Data Interface String Descriptor is not used set

p_usb_string_data_class_interface to CLD_NULL.

user_string_descriptor_table_num

_entries

The number of entries in the array of

CLD_Audio_2_0_Lib_User_String_Descriptors structures

addressed by p_user_string_descriptor_table. Set to 0 if

p_user_string_descriptor_table is set to CLD_NULL.

42

p_user_string_descriptor_table Pointer to an array of CLD_Audio_2_0_w_CDC_Lib_User_

String_Descriptors structures used to define any custom User

defined USB string descriptors. This table is used to define any

USB String descriptors for any string descriptor indexes that are

used in the Terminal or Unit Descriptors.

Set to CLD_NULL is not used.

The CLD_Audio_2_0_Lib_User_String_Descriptors structure

elements are explained below:

Structure Element Description

string_index

The USB String Descriptor

index for the string. The

string_index value is set to the

index specified in the

Terminal or Unit Descriptor

associated with this string.

p_string Pointer to a null terminated

string.

usb_string_language_id 16-bit USB String Descriptor Language ID Code as defined in the

USB Language Identifiers (LANGIDs) document

(www.usb.org/developers/docs/USB_LANGIDs.pdf).

0x0409 = English (United States)

fp_cld_usb_event_callback Function that is called when one of the following USB events occurs. This

function has a single CLD_USB_Event parameter.

Note: This callback can be called from the USB interrupt or mainline

context depending on which USB event was detected. The

CLD_USB_Event values in the table below are highlighted to show the

context the callback is called for each event.

The CLD_USB_Event has the following values:

Return Value Description
CLD_USB_CABLE_CONNECTED

USB Cable Connected.

CLD_USB_CABLE_DISCONNECTED USB Cable

Disconnected
CLD_USB_ENUMERATED_CONFIGURED_

FS
USB device enumerated

(USB Configuration set

to a non-zero value) at

Full-Speed
CLD_USB_ENUMERATED_CONFIGURED_

HS
USB device enumerated

(USB Configuration set

to a non-zero value) at

High-Speed
CLD_USB_UN_CONFIGURED USB Configuration set

to 0
CLD_USB_BUS_RESET USB Bus reset received

Note: Set to CLD_NULL if not required by application

fp_cld_lib_status Pointer to the function that is called when the CLD library has a status to

report. This function has the following parameters:

43

Parameter Description

status_code 16-bit status code. If the most

significant bit is a '1' the status

being reported is an Error.

p_additional_data Pointer to additional data

included with the status.

additional_data_size The number of bytes in the

specified additional data.

If the User plans on processing outside of the fp_cld_lib_status

function they will need to copy the additional data to a User buffer.

cld_sc598_audio_2_0_w_cdc_lib_main

void cld_sc598_audio_2_0_w_cdc_lib_main (void)

CLD SC598 Audio 2.0 with CDC Library mainline function

Arguments

None

Return Value

None.

Details

The cld_sc598_audio_2_0_w_cdc_lib_main function is the CLD library mainline function that must be

called in every iteration of the main program loop in order for the library to function properly.

44

cld_audio_2_0_lib_receive_stream_data

CLD_USB_Data_Receive_Return_Type cld_audio_2_0_lib_receive_stream_data

(CLD_USB_Transfer_Params * p_transfer_data)

CLD Audio 2.0 Library function used to receive data over the Isochronous OUT endpoint.

Arguments

p_transfer_data Pointer to a CLD_USB_Transfer_Params structure

used to describe the data being received.

Return Value

This function returns the CLD_USB_Data_Receive_Return_Type type which reports if the

Isochronous OUT transmission has been configured. CLD_USB_Data_Receive_Return_Type has the

following values:
CLD_USB_TRANSMIT_SUCCESSFUL The library has configured the requested

Isochronous IN transfer.
CLD_USB_TRANSMIT_FAILED The library failed to configure the requested

Isochronous OUT transfer. This will happen if

the Isochronous OUT endpoint is busy, or if the

p_transfer_data-> data_buffer is set to

CLD_NULL
CLD_USB_RECEIVE_FAILED_MISALIGNED The requested USB transfer failed because the

specified memory location isn't 32-bit aligned.

Details

The cld_audio_2_0_lib_receive_stream_data enables the Isochronous OUT endpoint to receive the data

specified by the p_transfer_data parameter from the USB Host. This function should be called when the

streaming RX endpoint is enabled, in fp_usb_out_transfer_complete, and in fp_transfer_aborted_callback.

The CLD_USB_Transfer_Params structure is described below.

typedef struct

{

 unsigned long num_bytes;

 unsigned char * p_data_buffer;

 union

 {

 CLD_USB_Data_Received_Return_Type (*fp_usb_out_transfer_complete)(unsigned

int num_bytes);

 void (*fp_usb_in_transfer_complete) (void);

 }callback;

 void (*fp_transfer_aborted_callback) (void);

 CLD_Time transfer_timeout_ms;

} CLD_USB_Transfer_Params;

A description of the CLD_USB_Transfer_Params structure elements is included below:

Structure Element Description

num_bytes The number of bytes to transfer to the USB Host. Once the

45

specified number of bytes has been transmitted the

fp_usb_in_transfer_complete callback function will be called.

p_data_buffer Pointer to the data to be sent to the USB Host. This buffer must

include the number of bytes specified by num_bytes.

fp_usb_out_transfer_complete Function called when the specified data has been received, or the

Host send a short packet (less than the max packet size) signaling

the end of a transfer. This function is passed the number of

received bytes.

fp_usb_in_transfer_complete Not used for OUT transfers.

fp_transfer_aborted_callback Function called if there is a problem receiving the data to the USB

Host. This function can be set to CLD_NULL if the User

application doesn't want to be notified if a problem occurs.

transfer_timeout_ms Isochronous OUT transfer timeout in milliseconds. If the

Isochronous OUT transfer takes longer then this timeout the

transfer is aborted and the fp_transfer_aborted_callback is called.

Setting the timeout to 0 disables the timeout

46

cld_audio_2_0_lib_transmit_audio_data

CLD_USB_Data_Transmit_Return_Type cld_audio_2_0_lib_transmit_audio_data

 (CLD_USB_Transfer_Params * p_transfer_data)

CLD Audio 2.0 Library function used to send data over the Isochronous IN endpoint.

Arguments

p_transfer_data Pointer to a CLD_USB_Transfer_Params structure

used to describe the data being transmitted.

Return Value

This function returns the CLD_USB_Data_Transmit_Return_Type type which reports if the Isochronous

IN transmission request was started. The CLD_USB_Data_Transmit_Return_Type type has the following

values:
CLD_USB_TRANSMIT_SUCCESSFUL The library has started the requested Isochronous

IN transfer.
CLD_USB_TRANSMIT_FAILED The library failed to start the requested Isochronous

IN transfer. This will happen if the Isochronous IN

endpoint is busy, or if the p_transfer_data->

data_buffer is set to CLD_NULL
CLD_USB_TRANSMIT_FAILED_MISALIGNED The requested USB transfer failed because the

specified memory location isn't 32-bit aligned.

Details

The cld_audio_2_0_lib_transmit_audio_data function transmits the data specified by the p_transfer_data

parameter to the USB Host using the Device's Isochronous IN endpoint.

The CLD_USB_Transfer_Params structure is described below.

typedef struct

{

 unsigned long num_bytes;

 unsigned char * p_data_buffer;

 union

 {

 CLD_USB_Data_Received_Return_Type (*fp_usb_out_transfer_complete)(void);

 void (*fp_usb_in_transfer_complete) (void);

 }callback;

 void (*fp_transfer_aborted_callback) (void);

 CLD_Time transfer_timeout_ms;

} CLD_USB_Transfer_Params;

A description of the CLD_USB_Transfer_Params structure elements is included below:

Structure Element Description

num_bytes The number of bytes to transfer to the USB Host. Once the

specified number of bytes has been transmitted the

fp_usb_in_transfer_complete callback function will be called.

p_data_buffer Pointer to the data to be sent to the USB Host. This buffer must

include the number of bytes specified by num_bytes.

47

fp_usb_out_transfer_complete Not Used for Isochronous IN transfers

fp_usb_in_transfer_complete Function called when the specified data has been transmitted to the

USB Host. This function pointer can be set to CLD_NULL if the

User application doesn't want to be notified when the data has been

transferred.

fp_transfer_aborted_callback Function called if there is a problem transmitting the data to the

USB Host. This function can be set to CLD_NULL if the User

application doesn't want to be notified if a problem occurs.

transfer_timeout_ms Isochronous IN transfer timeout in milliseconds. If the Isochronous

IN transfer takes longer then this timeout the transfer is aborted and

the fp_transfer_aborted_callback is called.

Setting the timeout to 0 disables the timeout

48

cld_audio_2_0_lib_transmit_audio_rate_feedback_data

CLD_USB_Data_Transmit_Return_Type

cld_audio_2_0_lib_transmit_audio_rate_feedback_data

 (CLD_USB_Audio_Feedback_Params * p_transfer_data)

CLD Audio 2.0 Library function used to transfer audio OUT rate feedback data over the optional rate

feedback Isochronous IN endpoint.

Arguments

CLD_USB_Audio_Feedback_Params Pointer to a CLD_USB_Audio_Feedback_Params

structure used to describe the data being

transmitted.

Return Value

This function returns the CLD_USB_Data_Transmit_Return_Type type which reports if the Interrupt IN

transmission request was started. The CLD_USB_Data_Transmit_Return_Type type has the following

values:
CLD_USB_TRANSMIT_SUCCESSFUL The library has scheduled the requested

Isochronous IN transfer.
CLD_USB_TRANSMIT_FAILED The library failed to schedule the requested

Isochronous IN transfer. This will happen if the

Isochronous IN endpoint is disabled, or busy.

Details

The cld_audio_2_0_lib_transmit_audio_rate_feedback_data function transmits the data specified by the

p_transfer_data parameter to the USB Host using the Device's Isochronous IN endpoint.

The CLD_USB_Audio_Feedback_Params structure is described below.

typedef struct

{

 float desired_data_rate;

 void (*fp_usb_in_transfer_complete) (void);

 void (*fp_transfer_aborted_callback) (void);

 CLD_Time transfer_timeout_ms;

} CLD_USB_Audio_Feedback_Params;

A description of the CLD_USB_Audio_Feedback_Params structure elements is included below:

Structure Element Description

desired_data_rate Feeback value in kHz (for example use 44.1 for 44.1kHz)

fp_usb_in_transfer_complete Function called when the specified data has been transmitted to the

USB Host. This function pointer can be set to CLD_NULL if the

User application doesn't want to be notified when the data has been

transferred.

fp_transfer_aborted_callback Function called if there is a problem transmitting the data to the

USB Host. This function can be set to CLD_NULL if the User

application doesn't want to be notified if a problem occurs.

transfer_timeout_ms Interrupt IN transfer timeout in milliseconds. If the Interrupt IN

49

transfer takes longer then this timeout the transfer is aborted and the

fp_transfer_aborted_callback is called.

Setting the timeout to 0 disables the timeout

50

cld_cdc_lib_receive_serial_data

CLD_USB_Data_Receive_Return_Type cld_cdc_lib_receive_serial_data

(CLD_USB_Transfer_Params * p_transfer_data)

CLD CDC Library function used to receive data over the Bulk OUT endpoint.

Arguments

p_transfer_data Pointer to a CLD_USB_Transfer_Params structure

used to describe the data being received.

Return Value

This function returns the CLD_USB_Data_Receive_Return_Type type which reports if the Isochronous

OUT transmission has been configured. CLD_USB_Data_Receive_Return_Type has the following

values:
CLD_USB_RECEIVE_SUCCESSFUL The library has configured the requested Bulk OUT

transfer.
CLD_USB_RECEIVE_FAILED The library failed to configure the requested Bulk

OUT transfer. This will happen if the Bulk OUT

endpoint is busy, or if the p_transfer_data->

data_buffer is set to CLD_NULL
CLD_USB_RECEIVE_FAILED_MISALIGNED The requested USB transfer failed because the

specified memory location isn't 32-bit aligned.

Details

The cld_cdc_lib_receive_serial_data enables the Bulk OUT endpoint to receive the data specified by the

p_transfer_data parameter from the USB Host. This function should be called when the device has been

enumerated/configured, in fp_usb_out_transfer_complete, and in fp_transfer_aborted_callback.

The CLD_USB_Transfer_Params structure is described below.

typedef struct

{

 unsigned long num_bytes;

 unsigned char * p_data_buffer;

 union

 {

 CLD_USB_Data_Received_Return_Type (*fp_usb_out_transfer_complete)(unsigned

int num_bytes);

 void (*fp_usb_in_transfer_complete) (void);

 }callback;

 void (*fp_transfer_aborted_callback) (void);

 CLD_Time transfer_timeout_ms;

} CLD_USB_Transfer_Params;

A description of the CLD_USB_Transfer_Params structure elements is included below:

Structure Element Description

num_bytes The number of bytes to transfer to the USB Host. Once the

specified number of bytes has been received the

fp_usb_in_transfer_complete callback function will be called.

51

p_data_buffer Pointer to the data to be sent to the USB Host. This buffer must

include the number of bytes specified by num_bytes.

fp_usb_out_transfer_complete Function called when the specified data has been received, or the

Host send a short packet (less than the max packet size) signaling

the end of a transfer. This function is passed the number of

received bytes.

fp_usb_in_transfer_complete Not used for OUT transfers.

fp_transfer_aborted_callback Function called if there is a problem receiving the data to the USB

Host. This function can be set to CLD_NULL if the User

application doesn't want to be notified if a problem occurs.

transfer_timeout_ms Bulk OUT transfer timeout in milliseconds. If the Bulk OUT

transfer takes longer then this timeout the transfer is aborted and the

fp_transfer_aborted_callback is called.

Setting the timeout to 0 disables the timeout

52

cld_cdc_lib_transmit_serial_data

CLD_USB_Data_Transmit_Return_Type cld_cdc_lib_transmit_serial_data

 (CLD_USB_Transfer_Params * p_transfer_data)

CLD CDC Library function used to send serial over the Bulk IN endpoint.

Arguments

p_transfer_data Pointer to a CLD_USB_Transfer_Params structure

used to describe the data being transmitted.

Return Value

This function returns the CLD_USB_Data_Transmit_Return_Type type which reports if the Bulk IN

transmission request was started. The CLD_USB_Data_Transmit_Return_Type type has the following

values:
CLD_USB_TRANSMIT_SUCCESSFUL The library has started the requested Bulk IN

transfer.
CLD_USB_TRANSMIT_FAILED The library failed to start the requested Bulk IN

transfer. This will happen if the Bulk IN endpoint

is busy, or if the p_transfer_data-> data_buffer is

set to NULL
CLD_USB_TRANSMIT_FAILED_MISALIGNED The requested USB transfer failed because the

specified memory location isn't 32-bit aligned.

Details

The cld_cdc_lib_transmit_serial_data function transmits the data specified by the p_transfer_data

parameter to the USB Host using the Device's Bulk IN endpoint.

The CLD_USB_Transfer_Params structure is described below.

typedef struct

{

 unsigned long num_bytes;

 unsigned char * p_data_buffer;

 union

 {

 CLD_USB_Data_Received_Return_Type (*fp_usb_out_transfer_complete)(void);

 void (*fp_usb_in_transfer_complete) (void);

 }callback;

 void (*fp_transfer_aborted_callback) (void);

 void transfer_timeout_ms;

} CLD_USB_Transfer_Params;

A description of the CLD_USB_Transfer_Params structure elements is included below:

Structure Element Description

num_bytes The number of bytes to transfer to the USB Host. Once the

specified number of bytes have been transmitted the

usb_in_transfer_complete callback function will be called.

p_data_buffer Pointer to the data to be sent to the USB Host. This buffer must

include the number of bytes specified by num_bytes.

53

fp_usb_out_transfer_complete Not Used for Bulk IN transfers

fp_usb_in_transfer_complete Function called when the specified data has been transmitted to the

USB host. This function pointer can be set to CLD_NULL if the

User application doesn't want to be notified when the data has been

transferred.

fp_transfer_aborted_callback Function called if there is a problem transmitting the data to the

USB Host. This function can be set to CLD_NULL if the User

application doesn't want to be notified if a problem occurs.

transfer_timeout_ms USB transfer timeout in milliseconds. If the Bulk IN transfer takes

longer then this timeout the transfer is aborted and the

fp_transfer_aborted_callback is called.

Setting the timeout to 0 disables the timeout

cld_audio_2_0_w_cdc_lib_resume_paused_control_transfer

void cld_audio_2_0_w_cdc_lib_resume_paused_control_transfer (void)

CLD library function used to resume a paused Control endpoint transfer.

Arguments

None

Return Value

None.

Details

The cld_audio_2_0_w_cdc_lib_resume_paused_control_transfer function is used to resume a Control

transfer which was paused by the fp_audio_set_req_cmd, fp_audio_get_req_cmd,

fp_cdc_cmd_send_encapsulated_cmd or fp_cdc_cmd_get_encapsulated_resp

function returning CLD_USB_TRANSFER_PAUSE. When called the

cld_audio_2_0_lib_resume_paused_control_transfer function will call the User application's

fp_audio_set_req_cmd, fp_audio_get_req_cmd, fp_cdc_cmd_send_encapsulated_cmd

or fp_cdc_cmd_get_encapsulated_resp function passing the CLD_USB_Transfer_Params of the

original paused transfer. The User function can then chose to accept, discard, or stall the Control

endpoint request.

54

cld_lib_usb_connect

void cld_lib_usb_connect (void)

CLD Library function used to connect to the USB Host.

Return Value

None.

Details

The cld_lib_usb_connect function is called after the CLD library has been initialized to connect the USB

device to the Host.

cld_ lib_usb_disconnect

void cld_lib_usb_disconnect (void)

CLD library function used to disconnect from the USB Host.

Return Value

None.

Details

The cld_lib_usb_disconnect function is called after the CLD library has been initialized to disconnect the

USB device to the Host.

cld_time_125us_tick

void cld_time_125us_tick (void)

CLD library timer function that should be called once per 125 microseconds.

Arguments

None

Return Value

None.

Details

This function should be called once every 125 microseconds in order to the CLD to processed periodic

events.

55

cld_usb0_isr_callback

void cld_usb0_isr_callback (void)

CLD library USB interrupt service routines

Arguments

None

Return Value

None.

Details

These USB ISR functions should be called from the corresponding USB Port Interrupt Service Routines

as shown in the CLD provided example projects.

cld_time_get

CLD_Time cld_time_get(void)

CLD library function used to get the current CLD time in milliseconds.

Arguments

None

Return Value

The current CLD library time.

Details

The cld_time_get function is used in conjunction with the cld_time_passed_ms function to measure how

much time has passed between the cld_time_get and the cld_time_passed_ms function calls in

milliseconds.

56

cld_time_passed_ms

CLD_Time cld_time_passed_ms(CLD_Time time)

CLD library function used to measure the amount of time that has passed in milliseconds.

Arguments

time A CLD_Time value returned by a cld_time_get

function call.

Return Value

The number of milliseconds that have passed since the cld_time_get function call that returned the

CLD_Time value passed to the cld_time_passed_ms function.

Details

The cld_time_passed_ms function is used in conjunction with the cld_time_get function to measure how

much time has passed between the cld_time_get and the cld_time_passed_ms function calls in

milliseconds.

cld_time_get_125us

CLD_Time cld_time_get_125us(void)

CLD library function used to get the current CLD time in 125 microsecond increments.

Arguments

None

Return Value

The current CLD library time.

Details

The cld_time_get_125us function is used in conjunction with the cld_time_passed_125us function to

measure how much time has passed between the cld_time_get_125us and the cld_time_passed_125us

function calls in 125 microsecond increments.

57

cld_time_passed_125us

CLD_Time cld_time_passed_125us(CLD_Time time)

CLD library function used to measure the amount of time that has passed in 125 microsecond increments.

Arguments

time A CLD_Time value returned by a

cld_time_get_125us function call.

Return Value

The number of 125microsecond increments that have passed since the cld_time_get_125us function call

that returned the CLD_Time value passed to the cld_time_passed_125us function.

Details

The cld_time_passed_125us function is used in conjunction with the cld_time_get_125us function to

measure how much time has passed between the cld_time_get_125us and the cld_time_passed_125us

function calls in 125 microsecond increments.

cld_lib_status_decode

char * cld_lib_status_decode (unsigned short status_cod,

 void * p_additional_data,

 unsigned short additional_data_size)

CLD Library function that returns a NULL terminated string describing the status passed to the function.

Arguments

status_code 16-bit status code returned by the CLD library.

Note: If the most significant bit is a '1' the status is

an error.
p_additional_data Pointer to the additional data returned by the CLD

library (if any).
additional_data_size Size of the additional data returned by the CLD

library.

Return Value

This function returns a decoded Null terminated ASCII string.

Details

The cld_lib_status_decode function can be used to generate an ASCII string which describes the CLD

library status passed to the function. The resulting string can be used by the User to determine the

meaning of the status codes returned by the CLD library.

58

cld_lib_access_usb_phy_reg

CLD_RV cld_lib_access_usb_phy_reg (CLD_USB_PHY_Access_Params * p_params)

CLD Library function used to read or write the USB phy registers.

Arguments

p_params Pointer to the CLD_USB_PHY_Access_Params

structure describing the phy access.

Return Value

CLD_SUCCESS – USB phy access complete.

CLD_ONGOING – USB phy access in progress, continue calling cld_lib_access_usb_phy_reg until it

returns CLD_SUCCESS or CLD_FAIL.

CLD_FAIL – Error occurred while accessing the phy.

Details

The cld_lib_access_usb_phy_reg function performs the USB phy access described by the p_params

parameter.

The CLD_USB_PHY_Access_Params structure is described below.

typedef struct

{

 CLD_Boolean write;

 unsigned char reg_addr;

 unsigned char v_ctrl;

 unsigned char reg_data;

} CLD_USB_PHY_Access_Params;

A description of the CLD_USB_PHY_Access_Params structure elements is included below:

Structure Element Description

write TRUE = register write, FALSE = register read

reg_addr Address of the USB phy register being accessed

v_ctrl ULPI Vendor Control Register Address

reg_data Data being written to, or read from, the USB phy register.

59

Adding the CLD SC598 Audio 2.0 with CDC Library to an Existing

CrossCore Embedded Studio Project

In order to include the CLD SC598 Audio 2.0 with CDC Library in a CrossCore Embedded Studio

(CCES) project you must configure the project linker settings so it can locate the library. The following

steps outline how this is done.

1. Copy the cld_sc598_audio_2_0_w_cdc_lib.h and cld_sc598_audio_2_0_w_cdc_lib_Core0.a files

to the project's src directory.

2. Open the project in CrossCore Embedded Studio.

3. Right click the project in the 'C/C++ Projects' window and select Properties.

If you cannot find the 'C/C++ Projects" window, make sure C/C++ Perspective is active. If the

C/C++ Perspective is active and you still cannot locate the 'C/C++ Projects' window select

Window → Show View → C/C++ Projects.

4. You should now see a project properties window similar to the one shown below.

Navigate to the C/C++ Build → Settings page and select the CrossCore ARM Bare Metal C

Linker's Libraries page. The CLD SC598 Audio 2.0 with CDC Library needs to be included in

the projects 'Additional objects' as shown in the diagram below (circled in blue). This lets the

linker know where the cld_sc598_audio_2_0_w_cdc_lib_Core0.a file is located.

60

5. The 'Additional objects' setting needs to be set for all configurations (Debug, Release, etc). This

can be done individually for each configuration, or all at once by selecting the [All

Configurations] option as shown in the previous figure (circled in orange).

61

User Firmware Code Snippets

The following code snippets are not complete, and are meant to be a starting point for the User firmware.

For a functional User firmware example that uses the CLD SC598 Audio 2.0 with CDC Library please

refer to the CLD example projects included available with the CLD SC598 Audio 2.0 with CDC Library.

main.c

void main(void)

{

 Main_States main_state = MAIN_STATE_SYSTEM_INIT;

 while (1)

 {

 switch (main_state)

 {

 case MAIN_STATE_SYSTEM_INIT:

 /* Initialize the clock, and power systems.*/

 main_state = MAIN_STATE_USER_INIT;

 break;

 case MAIN_STATE_USER_INIT:

 rv = user_init();

 if (rv == USER_INIT_SUCCESS)

 {

 main_state = MAIN_STATE_RUN;

 }

 else if (rv == USER_INIT_FAILED)

 {

 main_state = MAIN_STATE_ERROR;

 }

 break;

 case MAIN_STATE_RUN:

 user_main();

 break;

 case MAIN_STATE_ERROR:

 break;

 }

 }

}

62

user.c

#pragma pack (1)

/*

 USB Audio v2.0 Unit and Terminal descriptors that describe a simple

 audio device comprised of the following:

 Input Terminal - USB Streaming Endpoint

 ID = 0x01

 Channels: Left, Right

 Input Terminal - Microphone

 ID = 0x02

 Channels: Left, Right

 Output Terminal - Speaker

 ID = 0x06

 Source ID = 0x09

 Output Terminal - USB Streaming Endpoint

 ID = 0x07

 Source ID = 0x0a

 Feature Unit

 ID = 0x09

 Source ID = 0x01

 Controls:

 Master Channel 0: Mute (Control 1)

 Channel 1 (Left): Volume (Control 2)

 Channel 2 (Right): Volume (Control 2)

 Feature Unit

 ID = 0x0a

 Source ID = 0x02

 Controls:

 Master Channel 0: Volume (Control 2)

 */

/* USB Audio v2.0 Unit and Terminal descriptors that describe a simple audio device.*/

static const unsigned char user_audio_unit_and_terminal_descriptor[] =

{

 /* Input Terminal Descriptor - USB Endpoint */

 0x11, /* bLength */

 0x24, /* bDescriptorType = Class Specific Interface */

 0x02, /* bDescriptorSubType = Input Terminal */

 0x01, /* bTerminalID */

 0x01, 0x01, /* wTerminalType = USB Streaming */

 0x00, /* bAssocTerminal */

 0x03, /* bCSourceID */

 0x02, /* bNRChannels */

 0x03, 0x00, 0x00,0x00, /* wChannelConfig (Left & Right Present) */

 0x00, /* iChannelNames */

 0x00,0x00, /* bmControls */

 0x00, /* iTerminal */

 /* Input Terminal Descriptor - Microphone */

 0x11, /* bLength */

 0x24, /* bDescriptorType = Class Specific Interface */

 0x02, /* bDescriptorSubType = Input Terminal */

 0x02, /* bTerminalID */

 0x01, 0x02, /* wTerminalType = Microphone */

 0x00, /* bAssocTerminal */

 0x03, /* bCSourceID */

 0x02, /* bNRChannels */

 0x03, 0x00, 0x00,0x00, /* wChannelConfig (Left & Right Present) */

 0x00, /* iChannelNames */

 0x00,0x00, /* bmControls */

 0x00, /* iTerminal */

 /* Output Terminal Descriptor - Speaker */

 0x0c, /* bLength */

63

 0x24, /* bDescriptorType = Class Specific Interface */

 0x03, /* bDescriptorSubType = Output Terminal */

 0x06, /* bTerminalID */

 0x01, 0x03, /* wTerminalType - Speaker */

 0x00, /* bAssocTerminal */

 0x09, /* bSourceID */

 0x03, /* bCSourceID */

 0x00, 0x00, /* bmControls */

 0x00, /* iTerminal */

 /* Output Terminal Descriptor - USB Endpoint */

 0x0c, /* bLength */

 0x24, /* bDescriptorType = Class Specific Interface */

 0x03, /* bDescriptorSubType = Output Terminal */

 0x07, /* bTerminalID */

 0x01, 0x01, /* wTerminalType - USB Streaming */

 0x00, /* bAssocTerminal */

 0x0a, /* bSourceID */

 0x03, /* bCSourceID */

 0x00, 0x00, /* bmControls */

 0x00, /* iTerminal */

 /* Feature Unit Descriptor */

 0x12, /* bLength */

 0x24, /* bDescriptorType = Class Specific Interface */

 0x06, /* bDescriptorSubType = Feature Unit */

 0x09, /* bUnitID */

 0x01, /* bSourceID */

 0x0f, 0x00, 0x00, 0x00, /* bmaControls - Master */

 0x0f, 0x00, 0x00, 0x00, /* bmaControls - Left */

 0x0f, 0x00, 0x00, 0x00, /* bmaControls - Right */

 0x00, /* iFeature */

 /* Feature Unit Descriptor */

 0x12, /* bLength */

 0x24, /* bDescriptorType = Class Specific Interface */

 0x06, /* bDescriptorSubType = Feature Unit */

 0x0A, /* bUnitID */

 0x02, /* bSourceID */

 0x0f, 0x00, 0x00, 0x00, /* bmaControls - Master */

 0x0f, 0x00, 0x00, 0x00, /* bmaControls - Left */

 0x0f, 0x00, 0x00, 0x00, /* bmaControls - Right */

 0x00, /* iFeature */

 /* Clock Source Descriptor */

 0x08, /* bLength */

 0x24, /* bDescriptorType = Class Specific Interface */

 0x0a, /* bDescriptorSubType = Clock Source */

 0x03, /* ClockID */

 0x01, /* bmAttributes - Internal Fixed Clock */

 0x00, /* bmControls */

 0x00, /* bAssocTerminal */

 0x00, /* iClockSource */

};

/* Isochronous IN endpoint PCM format descriptor */

static const unsigned char user_audio_in_stream_format_descriptor[] =

{

 0x06, /* bLength */

 0x24, /* bDescriptorType - Class Specific Interface */

 0x02, /* bDescriptorSubType - Format Type */

 0x01, /* bFormatType - Format Type 1 */

 0x04, /* bSubSlotSize */

 0x20, /* bBitResolution */

};

64

/* Isochronous OUT endpoint PCM format descriptor */

static const unsigned char user_audio_out_stream_format_descriptor[] =

{

 0x06, /* bLength */

 0x24, /* bDescriptorType - Class Specific Interface */

 0x02, /* bDescriptorSubType - Format Type */

 0x01, /* bFormatType - Format Type 1 */

 0x04, /* bSubSlotSize */

 0x20, /* bBitResolution */

};

#pragma pack ()

/* IN Audio Stream Interface Endpoint Data Descriptor */

static const CLD_Audio_2_0_Lib_Audio_Stream_Data_Endpoint_Descriptor

user_audio_in_stream_endpoint_desc =

{

 .b_length = sizeof(CLD_Audio_2_0_Lib_Audio_Stream_Data_Endpoint_Descriptor),

 .b_descriptor_type = 0x25, /* Class Specific Endpoint */

 .b_descriptor_subtype = 0x01, /* Endpoint - General */

 .bm_attributes = 0x00, /* max packet only set to 0 */

 .bm_controls = 0x00,

 .b_lock_delay_units = 0x00,

 .w_lock_delay = 0x00,

};

/* OUT Audio Stream Interface Endpoint Data Descriptor */

static const CLD_Audio_2_0_Lib_Audio_Stream_Data_Endpoint_Descriptor

user_audio_out_stream_endpoint_desc =

{

 .b_length = sizeof(CLD_Audio_2_0_Lib_Audio_Stream_Data_Endpoint_Descriptor),

 .b_descriptor_type = 0x25, /* Class Specific Endpoint */

 .b_descriptor_subtype = 0x01, /* Endpoint - General */

 .bm_attributes = 0x00, /* max packet only set to 0 */

 .bm_controls = 0x00,

 .b_lock_delay_units = 0x02, /* Milliseconds */

 .w_lock_delay = 0x01, /* 1 Millisecond */

};

/* Audio Stream IN Interface parameters */

static CLD_Audio_2_0_Stream_Interface_Params user_audio_in_endpoint_params =

{

 .endpoint_number = 2, /* Isochronous endpoint number */

 /* Isochronous endpoint full-speed max packet size */

 .max_packet_size_full_speed = USER_AUDIO_MAX_PACKET_SIZE,

 /* Isochronous endpoint high-speed max packet size */

 .max_packet_size_high_speed = USER_AUDIO_MAX_PACKET_SIZE,

 .b_interval_full_speed = 1, /* Isochronous endpoint full-speed bInterval */

 /* Isochronous endpoint high-speed bInterval - 1 millisecond */

 .b_interval_high_speed = 4,

 /* Terminal ID of the associated Output Terminal */

 .b_terminal_link = 7,

 .b_format_type = 1, /* Type 1 Format */

 .bm_formats = 0x00000001, /* Type 1 - PCM format */

 .b_nr_channels = 2, /* 2 Channels */

 .bm_channel_config = 0x00000003, /* Front Left & Front Right Channels */

 .p_encoder_descriptor = CLD_NULL,

 .p_decoder_descriptor = CLD_NULL,

 .p_format_descriptor = (unsigned char*)

user_audio_in_stream_format_descriptor,

 .p_audio_stream_endpoint_data_descriptor =

(CLD_Audio_2_0_Lib_Audio_Stream_Data_Endpoint_Descriptor*)&user_audio_in_stream_endpoi

65

nt_desc,

};

/* Audio Stream OUT Interface parameters */

static CLD_Audio_2_0_Stream_Interface_Params user_audio_out_endpoint_params =

{

 .endpoint_number = 2, /* Isochronous endpoint number */

 /* Isochronous endpoint full-speed max packet size */

 .max_packet_size_full_speed = USER_AUDIO_MAX_PACKET_SIZE,

 /* Isochronous endpoint high-speed max packet size */

 .max_packet_size_high_speed = USER_AUDIO_MAX_PACKET_SIZE,

 /* Isochronous endpoint full-speed bInterval */

 .b_interval_full_speed = 1,

 /* Isochronous endpoint high-speed bInterval - 1 millisecond */

 .b_interval_high_speed = 4,

 /* Terminal ID of the associated Output Terminal */

 .b_terminal_link = 1,

 .b_format_type = 1, /* Type 1 Format */

 .bm_formats = 0x00000001, /* Type 1 - PCM format */

 .b_nr_channels = 2, /* 2 Channels */

 .bm_channel_config = 0x00000003, /* Front Left & Front Right Channels */

 .p_encoder_descriptor = CLD_NULL,

 .p_decoder_descriptor = CLD_NULL,

 .p_format_descriptor = (unsigned char*)

 user_audio_out_stream_format_descriptor,

 .p_audio_stream_endpoint_data_descriptor =

 (CLD_Audio_2_0_Lib_Audio_Stream_Data_Endpoint_Descriptor*)

 &user_audio_out_stream_endpoint_desc,

};

/* Audio Control Interrupt IN endpoint parameters */

static CLD_Audio_2_0_Control_Interrupt_Params user_audio_interrupt_in_params =

{

 .endpoint_number = 1, /* Endpoint number */

 .b_interval_full_speed = 1, /* Interrupt IN endpoint full-speed bInterval */

 .b_interval_high_speed = 4, /* Interrupt IN endpoint high-speed bInterval */

};

/*!< CDC Serial Data Bulk OUT endpoint parameters. */
static CLD_Serial_Data_Bulk_Endpoint_Params user_cdc_serial_data_rx_ep_params =
{
 .endpoint_number = 5,
 .max_packet_size_full_speed = 64,
 .max_packet_size_high_speed = 512,
};

/*!< CDC Serial Data Bulk IN endpoint parameters. */
static CLD_Serial_Data_Bulk_Endpoint_Params user_cdc_serial_data_tx_ep_params =
{
 .endpoint_number = 5,
 .max_packet_size_full_speed = 64,
 .max_packet_size_high_speed = 512,
};

/*!< CLD Library initialization data. */

static CLD_SC598_Audio_2_0_w_CDC_Lib_Init_Params user_audio_w_cdc_init_params =

{

 .vendor_id = 0x064b, /* Analog Devices Vendor ID */

 .product_id = 0x0008, /* Product ID. */

 .usb_bus_max_power = 0,

66

 .device_descriptor_bcdDevice = 0x0100,

 .audio_control_category_code = 0x01, /* Desktop Speaker */

 .phy_hs_timeout_calibration = 0, /* TODO: set based on USB Phy. */

 .phy_fs_timeout_calibration = 0, /* TODO: set based on USB Phy. */

 .phy_delay_req_after_ulip_chirp_cmd = CLD_TRUE, /* TODO: set based on USB Phy. */

 .fp_init_usb_phy = user_init_usb_phy,

 /* Unit and Terminal descriptor */

 .p_unit_and_terminal_descriptors = (unsigned char*)

 user_audio_unit_and_terminal_descriptor,

 .unit_and_terminal_descriptors_length =

 sizeof(user_audio_unit_and_terminal_descriptor),

 /* Pointer to the Interface parameters for the Audio Stream Rx interface. */

 .p_audio_streaming_rx_interface_params = &user_audio_out_endpoint_params,

 /* Pointer to the feedback parameters for the Audio Stream Rx interface. */

 .p_audio_rate_feedback_rx_params = &user_audio_rate_feedback_params,

 /* Pointer to the Interface parameters for the Audio Stream Tx interface. */

 .p_audio_streaming_tx_interface_params = &user_audio_in_endpoint_params,

 /* Function called when an USB Audio 2.0 Set Request is received.*/

 .fp_audio_set_req_cmd = user_audio_set_req_cmd,

 /* Function called when an USB Audio 2.0 Get Request is received. */

 .fp_audio_get_req_cmd = user_audio_get_req_cmd,

 /* Function called when the Isochronous OUT interface is enabled/disabled */

 .fp_audio_streaming_rx_endpoint_enabled =

 user_audio_streaming_rx_endpoint_enabled,

 /* Function called when the Isochronous IN interface is enabled/disabled */

 .fp_audio_streaming_tx_endpoint_enabled =

 user_audio_streaming_tx_endpoint_enabled,

 .p_serial_data_rx_endpoint_params = &user_cdc_serial_data_rx_ep_params,

 .p_serial_data_tx_endpoint_params = &user_cdc_serial_data_tx_ep_params,

 .fp_cdc_cmd_send_encapsulated_cmd = user_cdc_cmd_send_encapsulated_cmd,

 .fp_cdc_cmd_get_encapsulated_resp = user_cdc_cmd_get_encapsulated_resp,

 .fp_cdc_cmd_set_line_coding = user_cdc_cmd_set_line_coding,

 .fp_cdc_cmd_get_line_coding = user_cdc_cmd_get_line_coding,

 .fp_cdc_cmd_set_control_line_state= user_cdc_cmd_set_control_line_state,

 .fp_cdc_cmd_send_break = user_cdc_cmd_send_break,

 .support_cdc_network_connection = 1,

 .cdc_class_bcd_version = 0x0120, /* CDC Version 1.2 */

 .cdc_class_control_protocol_code = 0, /* No Class Specific protocol */

 /* USB string descriptors - Set to CLD_NULL if not required */

 .p_usb_string_manufacturer = "Analog Devices Inc",

 .p_usb_string_product = "SC598 Audio v2.0 w CDC Device",

 .p_usb_string_serial_number = CLD_NULL,

 .p_usb_string_configuration = CLD_NULL,

 .p_usb_string_audio_control_interface = CLD_NULL,

 .p_usb_string_audio_streaming_out_interface = “USB Audio Output”,

 .p_usb_string_audio_streaming_in_interface = “USB Audio Input”,

67

 .p_usb_string_communication_class_interface = "CLD CDC Ctrl",

 .p_usb_string_data_class_interface = "CLD CDC Data",

 .user_string_descriptor_table_num_entries = 0,

 .p_user_string_descriptor_table = CLD_NULL,

 .usb_string_language_id = 0x0409, /* English (US) language ID */

 /* Function called when a USB events occurs on USB0. */

 .fp_cld_usb_event_callback = user_usb_event,

 /* Function called when the CLD library reports a status. */

 .fp_cld_lib_status = user_cld_lib_status,

};

68

User_Init_Return_Code user_init (void)

{

 static unsigned char user_init_state = 0;

 CLD_RV cld_rv = CLD_ONGOING;

 User_Init_Return_Code init_return_code = USER_INIT_ONGOING;

 switch (user_init_state)

 {

 case 0:

 /* TODO: add any custom User firmware initialization */

 user_init_state++;

 break;

 case 1:

 /* Initialize the CLD Library */

 cld_rv =

cld_sc598_audio_2_0_w_cdc_lib_init(&user_audio_w_cdc_init_params);

 if (cld_rv == CLD_SUCCESS)

 {

 /* Connect to the USB Host */

 cld_lib_usb_connect();

 init_return_code = USER_INIT_SUCCESS;

 }

 else if (cld_rv == CLD_FAIL)

 {

 init_return_code = USER_INIT_FAILED;

 }

 else

 {

 init_return_code = USER_INIT_ONGOING;

 }

 }

 return init_return_code;

}

void user_main (void)

{

 cld_sc598_audio_2_0_w_cdc_lib_main();

}

static CLD_RV user_init_usb_phy (void)

{

 /* TODO: Reset and configure the USB Phy. */

}

static void user_usb_event (CLD_USB_Event event)

{

 switch (event)

 {

 case CLD_USB_CABLE_CONNECTED:

 /* TODO: Add any User firmware processed when a USB cable is connected. */

 break;

 case CLD_USB_CABLE_DISCONNECTED:

 /* TODO: Add any User firmware processed when a USB cable is

 disconnected.*/

 break;

 case CLD_USB_ENUMERATED_CONFIGURED:

 /* TODO: Add any User firmware processed when a Device has been

69

 enumerated.*/

 break;

 case CLD_USB_UN_CONFIGURED:

 /* TODO: Add any User firmware processed when a Device USB Configuration

 is set to 0.*/

 break;

 case CLD_USB_BUS_RESET:

 /* TODO: Add any User firmware processed when a USB Bus Reset occurs. */

 break;

 }

}

/* The following function will transmit the specified memory using

 the Isochronous IN endpoint. */

static user_audio_transmit_isochronous_in_data (void)

{

 static CLD_USB_Transfer_Params transfer_params;

 transfer_params.num_bytes = /* TODO: Set number of IN bytes */

 transfer_params.p_data_buffer = /* TODO: address data */

 transfer_params.callback.fp_usb_in_transfer_complete = /* TODO: Set to User

 callback function or

 CLD_NULL */;

 transfer_params.callback.fp_transfer_aborted_callback = /* TODO: Set to User

 callback function or

 CLD_NULL */;

 transfer_params.transfer_timeout_ms = /* TODO: Set to desired timeout */;

 if (cld_audio_2_0_lib_transmit_audio_data (&transfer_params) ==

 CLD_USB_TRANSMIT_SUCCESSFUL)

 {

 /* Isochronous IN transfer initiated successfully */

 }

 else /* Isochronous IN transfer was unsuccessful */

 {

 }

}

/* Function called when a Set Request is received */

static CLD_USB_Transfer_Request_Return_Type user_audio_set_req_cmd

 (CLD_Audio_2_0_Cmd_Req_Parameters * p_req_params,

 CLD_USB_Transfer_Params * p_transfer_data)

{

 p_transfer_data->p_data_buffer = /* TODO: address to store data */

 p_transfer_data->callback.fp_usb_out_transfer_complete =

 user_audio_set_req_cmd_transfer_complete;

 p_transfer_data->fp_transfer_aborted_callback = /* TODO: Set to User callback

 function or CLD_NULL */

 /* TODO: Return how the Control transfer should be handled (Accept, Pause,

 Discard, or Stall */

}

/* Function called when the Set Request data is received */

static CLD_USB_Data_Received_Return_Type user_audio_set_req_cmd_transfer_complete

 (void)

{

 /* TODO: Return if the received data is good (CLD_USB_DATA_GOOD) or bad

 (CLD_USB_DATA_BAD_STALL) */

}

/* Function called when a Get Request is received */

static CLD_USB_Transfer_Request_Return_Type user_audio_get_req_cmd

 (CLD_Audio_2_0_Cmd_Req_Parameters * p_req_params,

70

 CLD_USB_Transfer_Params * p_transfer_data)

{

 p_transfer_data->p_data_buffer = /* TODO: address to source data */

 p_transfer_data->callback.fp_usb_in_transfer_complete =

 user_audio_get_req_cmd_transfer_complete;

 p_transfer_data->fp_transfer_aborted_callback = /* TODO: Set to User callback

 function or CLD_NULL */

 /* TODO: Return how the Control transfer should be handled (Accept, Pause,

 Discard, or Stall */

}

/* Function called when the Get Request data has been transmitted */

static void user_audio_get_req_cmd_transfer_complete (void)

{

 /* TODO: The Get Request data has been sent to the Host, add any

 User functionality. */

}

static void user_audio_streaming_rx_endpoint_enabled (CLD_Boolean enabled)

{

 if (enabled == CLD_TRUE)

 {

 /* TODO: Add Isochronous OUT endpoint enabled User functionality. */

 }

 else

 {

 /* TODO: Add Isochronous OUT endpoint disabled User functionality. */

 }

}

static void user_audio_streaming_tx_endpoint_enabled (CLD_Boolean enabled)

{

 if (enabled == CLD_TRUE)

 {

 /* TODO: Add Isochronous IN endpoint enabled User functionality. */

 }

 else

 {

 /* TODO: Add Isochronous IN endpoint disabled User functionality. */

 }

}

/* Function called when a Send Encapsulated Command request is received */

static CLD_USB_Transfer_Request_Return_Type user_cdc_cmd_send_encapsulated_cmd

 (CLD_USB_Transfer_Params * p_transfer_data)

{

 p_transfer_data->p_data_buffer = /* TODO: address to store data */

 p_transfer_data->callback.usb_out_transfer_complete =

 user_cdc_send_encapsilated_cmd_transfer_complete;

 p_transfer_data->fp_transfer_aborted_callback = /* TODO: Set to User callback

 function or CLD_NULL

*/

 /* TODO: Return how the Control transfer should be handled (Accept, Pause,

 Discard, or Stall */

}

/* Function called when the Send Encapsulated Command data is received */

static CLD_USB_Data_Received_Return_Type

 user_cdc_send_encapsilated_cmd_transfer_complete (void)

{

 /* TODO: Return if the received data is good (CLD_USB_DATA_GOOD) or bad

71

 (CLD_USB_DATA_BAD_STALL) */

}

72

/* Function called when a Get Encapsulated Response request is received */

static CLD_USB_Transfer_Request_Return_Type user_cdc_cmd_get_encapsulated_resp

 (CLD_USB_Transfer_Params * p_transfer_data)

{

 p_transfer_data->num_bytes = /* TODO: Set to size of response */

 p_transfer_data->p_data_buffer = /* TODO: address to source the response data */

 p_transfer_data->callback.usb_in_transfer_complete =

 user_cdc_get_encapsulated_resp_transfer_complete;

 p_transfer_data->fp_transfer_aborted_callback = /* TODO: Set to User callback

 function or NULL */

 /* TODO: Return how the Control transfer should be handled (Accept, Pause,

 Discard, or Stall */

}

/* Function called when a Get Encapsulated Response has been transmitted */

static void user_cdc_get_encapsulated_resp_transfer_complete (void)

{

 /* TODO: The Get Encapsulated Response data has been sent to the Host, add any

 User functionality. */

}

/* Function called when a Set Line Coding Request has been received*/

CLD_USB_Data_Received_Return_Type user_cdc_cmd_set_line_coding

 (CLD_CDC_Line_Coding * p_line_coding)

{

 if (/* TODO: Check if CDC Line Coding is valid */)

 {

 /* TODO: Save the requested CDC Line Coding and process it accordingly */

 return CLD_USB_DATA_GOOD;

 }

 else

 {

 return CLD_USB_DATA_BAD_STALL;

 }

}

/* Function called when a Get Line Coding Request has been received*/

CLD_RV user_cdc_cmd_get_line_coding (CLD_CDC_Line_Coding * p_line_coding)

{

 if (/* TODO: Check if Get CDC Line Coding request is valid */)

 {

 /* TODO: Copy the current CDC Line Coding into the p_line_coding structure */

 return CLD_SUCCESS;

 }

 else

 {

 return CLD_FAIL;

 }

}

73

/* Function called when a CDC Set Control Line State Request has been received*/

CLD_USB_Data_Received_Return_Type user_cdc_cmd_set_control_line_state

 (CLD_CDC_Control_Line_State * p_control_line_state)

{

 if (/* TODO: Check if CDC Control Line state is valid */)

 {

 /* TODO: Process the CDC Control Line State */

 return CLD_USB_DATA_GOOD;

 }

 else

 {

 return CLD_USB_DATA_BAD_STALL;

 }

}

/* Function called when a CDC Send Break Request has been received*/

static void user_cdc_cmd_send_break (unsigned short duration)

{

 /* TODO: Process the requested break duration */

}

static void user_cld_lib_status (unsigned short status_code, void * p_additional_data,

 unsigned short additional_data_size)

{

 /* TODO: Process the library status if needed. The status can also be decoded to

 a USB readable string using cld_lib_status_decode as shown below: */

 char * p_str = cld_lib_status_decode(status_code, p_additional_data,

 additional_data_size);

}

	Disclaimer
	Introduction
	USB Background
	CLD Library USB Enumeration Flow Chart
	CLD Audio 2.0 Library Isochronous OUT Flow Chart
	CLD Audio 2. Library Isochronous IN Flow Chart
	CLD CDC Library Bulk OUT Flow Chart
	CLD CDC Library Bulk IN Flow Chart

	USB Audio Device Class v2.0 Background
	Isochronous Endpoint Bandwidth Allocation
	USB Audio Device Class v2.0 Control Endpoint Requests
	USB Audio Device Class v2.0 Set Request
	CLD SC598 Audio Device Class v2.0 Set Request Flow Chart

	USB Audio Device Class v2.0 Get Request
	CLD SC598 Audio Device Class v2.0 Get Request Flow Chart

	CDC Abstract Control Model Background
	CDC Abstract Control Model Control Endpoint Requests
	Send Encapsulated Command (required)
	CLD CDC Library Send Encapsulated Command Flow Chart

	Get Encapsulated Command (required)
	CLD CDC Library Get Encapsulated Command Flow Chart

	Set Line Coding (optional)
	CLD CDC Library Set Line Coding Flow Chart

	Get Line Coding (optional)
	CLD CDC Library Get Line Coding Flow Chart

	Set Control Line State (optional)
	CLD CDC Library Set Control Line State Flow Chart

	Send Break (optional)
	CLD CDC Library Send Break Flow Chart

	Dependencies
	CLD SC598 Audio 2.0 with CDC Library Scope and Intended Use
	CLD Audio 2.0 with CDC (2-Channel) Example v1.01 Description
	Running the Example Project
	Testing CDC
	Testing Audio 2.0

	CLD SC598 Audio 2.0 with CDC Library API
	cld_sc598_audio_2_0_w_cdc_lib_init
	Arguments
	Return Value
	Details

	cld_sc598_audio_2_0_w_cdc_lib_main
	Arguments
	Return Value
	Details

	cld_audio_2_0_lib_receive_stream_data
	Arguments
	Return Value
	Details

	cld_audio_2_0_lib_transmit_audio_data
	Arguments
	Return Value
	Details

	cld_audio_2_0_lib_transmit_audio_rate_feedback_data
	Arguments
	Return Value
	Details

	cld_cdc_lib_receive_serial_data
	Arguments
	Return Value
	Details

	cld_cdc_lib_transmit_serial_data
	Arguments
	Return Value
	Details

	cld_audio_2_0_w_cdc_lib_resume_paused_control_transfer
	Arguments
	Return Value
	Details

	cld_lib_usb_connect
	Return Value
	Details

	cld_ lib_usb_disconnect
	Return Value
	Details

	cld_time_125us_tick
	Arguments
	Return Value
	Details

	cld_usb0_isr_callback
	Arguments
	Return Value
	Details

	cld_time_get
	Arguments
	Return Value
	Details

	cld_time_passed_ms
	Arguments
	Return Value
	Details

	cld_time_get_125us
	Arguments
	Return Value
	Details

	cld_time_passed_125us
	Arguments
	Return Value
	Details

	cld_lib_status_decode
	Arguments
	Return Value
	Details

	cld_lib_access_usb_phy_reg
	Arguments
	Return Value
	Details

	Adding the CLD SC598 Audio 2.0 with CDC Library to an Existing CrossCore Embedded Studio Project
	User Firmware Code Snippets
	main.c
	user.c

